Imaginary part of the active neutrino self-energy

M. Laine (AEC, ITP, University of Bern)

Results are presented for the imaginary part of the active neutrino self-energy matrix within the Standard Model of particle physics, originating from $2 \leftrightarrow 2$ and $1 \leftrightarrow 3$ scatterings described by the Fermi model at temperatures between 1 MeV and $10 \mathrm{GeV} .{ }^{1}$ In this temperature range, the particle content of a Standard Model plasma changes significantly because of the presence of a QCD crossover. A way to account for hadronic effects in this regime was worked out in ref. [1]. An approximate phenomenological implementation was proposed in ref. [2]. ${ }^{2}$ The results play a role for the determination of the sterile neutrino production rate through active-sterile transitions, both at zero [1, 2] and at non-zero [3] lepton chemical potential.

Given that weak interactions of Standard Model neutrinos take place through vertices with the Dirac structure $\sim \gamma^{\mu} a_{\mathrm{L}}$, where $a_{\mathrm{L}} \equiv\left(1-\gamma_{5}\right) / 2$ is a chiral projector, their inverse propagator is of the form [4]

$$
\begin{equation*}
S^{-1}(Q)=a_{\mathrm{R}}(\not Q+\not \subset) a_{\mathrm{L}} . \tag{1}
\end{equation*}
$$

Because of the chiral projectors, the (retarded) self-energy can be expressed as

$$
\begin{equation*}
\not Z=a \not Q+b \not \psi, \tag{2}
\end{equation*}
$$

where $u \equiv(1, \mathbf{0})$ is the plasma four-velocity, and a, b are complex functions. The factor a represents a small correction to the tree-level term \varnothing and is conventionally omitted [5]. The coefficient b can be expressed as

$$
\begin{equation*}
b=b_{r}+i \frac{\Gamma}{2} \tag{3}
\end{equation*}
$$

where b_{r} represents a modification of the dispersion relation, and is often referred to as an "effective potential". As discussed in ref. [5], it gets generated at 1-loop level and is significantly modified if a lepton asymmetry is present. The topic of the present note is the imaginary part, Γ, which may be referred to as a "thermal width" or a "damping coefficient".

It is easy to see that the width, as defined by eq. (3), can be projected out as

$$
\begin{equation*}
\Gamma=\operatorname{Tr}\left\{\frac{\omega \not \subset-Q^{2} \psi}{\mathbf{q}^{2}} \operatorname{Im} \nexists a_{\mathrm{L}}\right\}, \quad Q \equiv(\omega, \mathbf{q}) . \tag{4}
\end{equation*}
$$

[^0]If we introduce the objects

$$
\begin{equation*}
I_{Q} \equiv \operatorname{Tr}\left\{\not Q \operatorname{Im} \not \subset a_{\mathrm{L}}\right\}, \quad I_{u} \equiv \operatorname{Tr}\left\{\not \mu \operatorname{Im} \not \mathbb{Z} a_{\mathrm{L}}\right\}, \tag{5}
\end{equation*}
$$

then $\Gamma=\left(\omega I_{Q}-Q^{2} I_{u}\right) / \mathbf{q}^{2}$. In the following we assume Γ to be evaluated at the on-shell point of sterile neutrinos, with $\omega \equiv \sqrt{\mathbf{q}^{2}+M_{1}^{2}}$.

For a numerical evaluation of the objects in eq. (5), it is natural to factor out the combination $G_{\mathrm{F}}^{2} T^{4}$ (here G_{F} denotes the Fermi constant) as well as appropriate powers of ω :

$$
\begin{equation*}
\hat{I}_{Q} \equiv \frac{I_{Q}}{G_{\mathrm{F}}^{2} T^{4} \omega^{2}}, \quad \hat{I}_{u} \equiv \frac{I_{u}}{G_{\mathrm{F}}^{2} T^{4} \omega} \tag{6}
\end{equation*}
$$

With this notation,

$$
\begin{equation*}
\Gamma(\mathbf{q})=G_{\mathrm{F}}^{2} T^{4} \omega\left\{\hat{I}_{Q}+\frac{M_{1}^{2}}{\mathbf{q}^{2}}\left(\hat{I}_{Q}-\hat{I}_{u}\right)\right\}_{\omega=\sqrt{\mathbf{q}^{2}+M_{1}^{2}}} . \tag{7}
\end{equation*}
$$

The latter term is of subleading importance if $M_{1} \ll|\mathbf{q}| \sim 3 T$. Numerical results for \hat{I}_{Q} and \hat{I}_{u}, for different \mathbf{q} and charged lepton flavours α, are shown in figs. 1-6 (for these results the bottom quark has been added to Table 1 of ref. [2], and we have set $M_{1}=10 \mathrm{keV}$).

I am grateful to P. Hernández for encouraging me to make the results available in the present format, to M. Drewes for prompting me to critically reread refs. [1, 2, 3], and to T. Asaka and M. Shaposhnikov for collaboration.

References

[1] T. Asaka, M. Laine and M. Shaposhnikov, On the hadronic contribution to sterile neutrino production, JHEP 06 (2006) 053 [hep-ph/0605209].
[2] T. Asaka, M. Laine and M. Shaposhnikov, Lightest sterile neutrino abundance within the $\nu M S M$, JHEP 01 (2007) 091 [hep-ph/0612182].
[3] M. Laine and M. Shaposhnikov, Sterile neutrino dark matter as a consequence of $\nu M S M$ induced lepton asymmetry, JCAP 06 (2008) 031 [0804.4543].
[4] H.A. Weldon, Effective fermion masses of $\mathcal{O}(g T)$ in high-temperature gauge theories with exact chiral invariance, Phys. Rev. D 26 (1982) 2789.
[5] D. Nötzold and G. Raffelt, Neutrino Dispersion at Finite Temperature and Density, Nucl. Phys. B 307 (1988) 924.

Figure 1: The quantities \hat{I}_{Q} (left) and \hat{I}_{u} (right), defined in eq. (6), for $\alpha=1$.

Figure 2: The quantities \hat{I}_{Q} (left) and \hat{I}_{u} (right), defined in eq. (6), for $\alpha=2$.

Figure 3: The quantities \hat{I}_{Q} (left) and \hat{I}_{u} (right), defined in eq. (6), for $\alpha=3$.

Figure 4: Like fig. 1 but with hadronic effects omitted ($N_{c}=0$).

Figure 5: Like fig. 2 but with hadronic effects omitted ($N_{\mathrm{c}}=0$).

Figure 6: Like fig. 3 but with hadronic effects omitted ($N_{c}=0$).

[^0]: ${ }^{1}$ At temperatures above a few $\mathrm{GeV}, 1 \leftrightarrow 2$ processes overtake the Fermi scatterings but have not been included in the plots here. To see their effect, please consult the data files on the web page.
 ${ }^{2}$ Please consult the erratum of this paper for a few technical corrections.

