Imaginary part of the active neutrino self-energy

M. Laine (AEC, ITP, University of Bern)

Results are presented for the imaginary part of the active neutrino self-energy matrix within the Standard Model of particle physics, originating from $2 \leftrightarrow 2$ and $1 \leftrightarrow 3$ scatterings described by the Fermi model at temperatures between 1 MeV and 10 GeV.¹ In this temperature range, the particle content of a Standard Model plasma changes significantly because of the presence of a QCD crossover. A way to account for hadronic effects in this regime was worked out in ref. [1]. An approximate phenomenological implementation was proposed in ref. [2].² The results play a role for the determination of the sterile neutrino production rate through active-sterile transitions, both at zero [1, 2] and at non-zero [3] lepton chemical potential.

Given that weak interactions of Standard Model neutrinos take place through vertices with the Dirac structure $\sim \gamma^{\mu}a_{\rm L}$, where $a_{\rm L} \equiv (1 - \gamma_5)/2$ is a chiral projector, their inverse propagator is of the form [4]

$$S^{-1}(Q) = a_{\rm R} \left(\mathcal{Q} + \Sigma \right) a_{\rm L} \,. \tag{1}$$

Because of the chiral projectors, the (retarded) self-energy can be expressed as

$$\Sigma = a \mathcal{Q} + b \not \mu , \qquad (2)$$

where $u \equiv (1, \mathbf{0})$ is the plasma four-velocity, and a, b are complex functions. The factor a represents a small correction to the tree-level term Q and is conventionally omitted [5]. The coefficient b can be expressed as

$$b = b_r + i \frac{\Gamma}{2} , \qquad (3)$$

where b_r represents a modification of the dispersion relation, and is often referred to as an "effective potential". As discussed in ref. [5], it gets generated at 1-loop level and is significantly modified if a lepton asymmetry is present. The topic of the present note is the imaginary part, Γ , which may be referred to as a "thermal width" or a "damping coefficient".

It is easy to see that the width, as defined by eq. (3), can be projected out as

$$\Gamma = \operatorname{Tr}\left\{\frac{\omega \, Q - Q^2 \, \mu}{\mathbf{q}^2} \operatorname{Im} \Sigma \, a_{\mathrm{L}}\right\}, \quad Q \equiv (\omega, \mathbf{q}) \;. \tag{4}$$

¹At temperatures above a few GeV, $1 \leftrightarrow 2$ processes overtake the Fermi scatterings but have not been included in the plots here. To see their effect, please consult the data files on the web page.

²Please consult the erratum of this paper for a few technical corrections.

If we introduce the objects

$$I_Q \equiv \operatorname{Tr} \{ \mathcal{Q} \operatorname{Im} \Sigma a_{\mathrm{L}} \}, \quad I_u \equiv \operatorname{Tr} \{ \# \operatorname{Im} \Sigma a_{\mathrm{L}} \}, \quad (5)$$

then $\Gamma = (\omega I_Q - Q^2 I_u)/\mathbf{q}^2$. In the following we assume Γ to be evaluated at the on-shell point of sterile neutrinos, with $\omega \equiv \sqrt{\mathbf{q}^2 + M_1^2}$.

For a numerical evaluation of the objects in eq. (5), it is natural to factor out the combination $G_{\rm F}^2 T^4$ (here $G_{\rm F}$ denotes the Fermi constant) as well as appropriate powers of ω :

$$\hat{I}_Q \equiv \frac{I_Q}{G_F^2 T^4 \omega^2}, \qquad \hat{I}_u \equiv \frac{I_u}{G_F^2 T^4 \omega}.$$
 (6)

With this notation,

$$\Gamma(\mathbf{q}) = G_{\rm F}^2 T^4 \,\omega \left\{ \hat{I}_Q + \frac{M_1^2}{\mathbf{q}^2} \left(\hat{I}_Q - \hat{I}_u \right) \right\}_{\omega = \sqrt{\mathbf{q}^2 + M_1^2}} \,. \tag{7}$$

The latter term is of subleading importance if $M_1 \ll |\mathbf{q}| \sim 3T$. Numerical results for I_Q and \hat{I}_u , for different \mathbf{q} and charged lepton flavours α , are shown in figs. 1–6 (for these results the bottom quark has been added to Table 1 of ref. [2], and we have set $M_1 = 10$ keV).

I am grateful to P. Hernández for encouraging me to make the results available in the present format, to M. Drewes for prompting me to critically reread refs. [1, 2, 3], and to T. Asaka and M. Shaposhnikov for collaboration.

References

- T. Asaka, M. Laine and M. Shaposhnikov, On the hadronic contribution to sterile neutrino production, JHEP 06 (2006) 053 [hep-ph/0605209].
- [2] T. Asaka, M. Laine and M. Shaposhnikov, Lightest sterile neutrino abundance within the νMSM, JHEP 01 (2007) 091 [hep-ph/0612182].
- [3] M. Laine and M. Shaposhnikov, Sterile neutrino dark matter as a consequence of νMSMinduced lepton asymmetry, JCAP 06 (2008) 031 [0804.4543].
- [4] H.A. Weldon, Effective fermion masses of $\mathcal{O}(gT)$ in high-temperature gauge theories with exact chiral invariance, Phys. Rev. D 26 (1982) 2789.
- [5] D. Nötzold and G. Raffelt, Neutrino Dispersion at Finite Temperature and Density, Nucl. Phys. B 307 (1988) 924.

Figure 1: The quantities \hat{I}_Q (left) and \hat{I}_u (right), defined in eq. (6), for $\alpha = 1$.

Figure 2: The quantities \hat{I}_Q (left) and \hat{I}_u (right), defined in eq. (6), for $\alpha = 2$.

Figure 3: The quantities \hat{I}_Q (left) and \hat{I}_u (right), defined in eq. (6), for $\alpha = 3$.

Figure 4: Like fig. 1 but with hadronic effects omitted $(N_{\rm c} = 0)$.

Figure 5: Like fig. 2 but with hadronic effects omitted $(N_c = 0)$.

Figure 6: Like fig. 3 but with hadronic effects omitted $(N_{\rm c} = 0)$.