
9.7. Transport coefficients

An important class of observables are so-called transport coefficients. They generically describe
the response of the system to some external perturbation. For instance, electrical conductivity

determines the current that an external electric field leads to. Other standard transport coefficients
are diffusion constants related to how an externally induced charge excess in some region flattens
out, and shear and bulk viscosities, related to how excesses in momentum flow die away.

We illustrate here some basic aspects of the formalism related to transport coefficients with the
example of a decay rate. In this case, the external perturbation has displaced the system from
equilibrium by giving it a net charge of some type. We assume, however, that the charge is not
globally conserved, but that there are processes which violate charge conservation. In this case,
the system will relax back to equilibrium, i.e. the net charge will disappear, and the decay rate
describes how fast this process takes place. The formalism for treating this case can be found in
§118, 122, 124, 126 of ref.48.

Let N̂(t) be the Heisenberg operator of some physical quantity, such as the lepton number. We
will consider a situation where the system is out-of-equilibrium in the sense that the expectation
value of N̂(t) differs from its equilibrium expectation value, which we assume to be zero:

〈N̂(t)〉eq = 0 . (9.174)

The non-vanishing non-equilibrium expectation value, 〈N̂(t)〉non-eq, is assumed to evolve so slowly

that all other reactions are in equilibrium. Then 〈N̂(t)〉non-eq should evolve towards zero, and

if 〈N̂(t)〉non-eq is small in some sense [even though it should still be larger than typical thermal

fluctuations, (〈N̂2〉eq)
1/2 ], we can expect the evolution to be described by an equation of first

order in 〈N̂(t)〉non-eq:

d

dt
〈N̂(t)〉non-eq = −Γ 〈N̂(t)〉non-eq + O

(

〈N̂(t)〉2non-eq

)

. (9.175)

The coefficient Γ may be called the decay rate. The goal would be to obtain an expression for
Γ, describing “dissipation”, in terms of various equilibrium expectation values, of the type 〈...〉eq,
describing “fluctuations”.

Before proceeding, let us stress that the form of Eq. (9.175) applies to other transport coefficients
as well. Consider, as an example, electrical conductivity, σ, defined through

〈̂j〉 = σE , (9.176)

where E is an external electric field. Taking a time derivative leads to

∂ 〈̂j〉

∂t
= σ

∂E

∂t
= −σ〈̂j〉 , (9.177)

where we used the Maxwell equation ∇× B− ∂E/∂t = 〈̂j〉, and assumed that the external probe
field B has been set to zero. Clearly Eq. (9.177) has precisely the form of Eq. (9.175).

In order derive an equation of the type in Eq. (9.175), let us write a generic linear response
formula for 〈N̂(t)〉non-eq. We can assume that at time t = −∞, the system was in full equilibrium,
but then a source term was added to the Hamiltonian,

Ĥ(t) = Ĥ0 − µ(t)N̂(t) , (9.178)

which will slowly displace 〈N̂(t)〉non-eq from zero. Solving the equation of motion for the density
matrix ρ̂(t),

i
dρ̂(t)

dt
=

[

Ĥ(t), ρ̂(t)
]

, (9.179)
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to first order in the perturbation,

ρ̂(t) ≈ ρ̂(−∞) − i

∫ t

−∞

dt′
[

Ĥ(t′), ρ̂(−∞)
]

+ ... , (9.180)

yields

〈N̂(t)〉non-eq = Tr [ρ̂(t)N̂ (t)]

≈ i

∫ t

−∞

dt′ µ(t′)Tr
{[

N̂(t′), ρ̂(−∞)
]

N̂(t)
}

= i

∫

∞

−∞

dt′
〈

[N̂(t), N̂ (t′)]
〉

eq
θ(t − t′)µ(t′) , (9.181)

where
〈...〉non-eq ≡ Tr [ρ̂(t)(...)] , 〈...〉eq ≡ Tr [ρ̂(−∞)(...)] , (9.182)

and the leading term disappeared because of the assumption in Eq. (9.174). We also made use of
the fact that Ĥ0 and ρ̂(−∞) commute. In addition, we inserted θ(t− t′) and extended afterwards
the upper end of the integration to infinity, to stress the retarded nature of the correlator. The
equilibrium expectation value in Eq. (9.181) is called a linear response function.

Eq. (9.181) is now in principle of a type that could be used in Eq. (9.175), expect that it contains
the function µ(t′) on the right-hand side, rather the quantity 〈N̂ (t′)〉non-eq which would be needed
for indentifying Γ. In some cases further input may allow to establish a bridge between µ(t′) and
〈N̂(t′)〉non-eq, but below we choose to follow another approach. However, as we will see, Eq. (9.181)
is still quite useful, because it shows explicitly that the essential information should reside in the
retarded Green’s function 〈[N̂(t), N̂ (t′)]〉eqθ(t − t′).

Indeed, following §118 of ref.48, let us define the correlator

∆(t) ≡
〈1

2

{

N̂(t), N̂(0)
}〉

eq
. (9.183)

The value ∆(0) amounts to a “susceptibility” and is trivial to compute perturbatively; for the
number operator of a massless chiral fermion, for instance, one gets by taking the second derivative
from Eq. (7.41), and dividing by two because we are considering Majorana rather than Dirac
fermions,

∆(0) = 〈N̂2〉eq =
1

Z
T 2∂2

µTr
[

e−β(Ĥ0−µN̂)
]

µ=0

= T 2
[

∂2
µ lnZ(T, µ)

]

µ=0

= −T 2
[

∂2
µ

f(T, µ)V

T

]

µ=0

=
1

6
V T 3 , (9.184)

where V is the volume. Furthermore, it is clear that ∆(−t) = ∆(t) (by time-translational invari-
ance). Finally, at large time separations the fluctuations are uncorrelated, so that

lim
t→∞

∆(t) = 0 . (9.185)

Landau and Lifshitz now argue that the way ∆(t) approaches zero (on time scales much larger
than the ones needed to reach equilibrium for any given non-zero 〈N̂(t)〉non-eq, i.e. certainly t ≫
1/T ) is determined precisely by the coefficient Γ in Eq. (9.175). We recall that according to
Eq. (9.181), Γ must in any case be related to equilibrium expectation values. Concretely, the
behaviour should be48

∆(t) ≃ ∆(0) exp(−Γ|t|) . (9.186)
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Let us at this stage define several auxiliary objects (cf. Sec. 8.1): a Fourier-transform of ∆(t),

∆̃(ω) ≡

∫

∞

−∞

dt eiωt ∆(t) ; (9.187)

a retarded correlator,

CR(t) ≡
〈

i
[

N̂(t), N̂(0)
]

θ(t)
〉

eq
; (9.188)

and its Fourier-transform,

C̃R(ω) ≡

∫

∞

−∞

dt eiωt CR(t) . (9.189)

Standard thermodynamic relations (Eq. (8.17)) dictate that

∆̃(ω) =
[

1 + 2nB(ω)
]

ρ(ω) (9.190)

=
[

1 + 2nB(ω)
] 1

2i

[

C̃R(ω + i0+) − C̃R(ω − i0+)
]

. (9.191)

Carrying out the Fourier integral on Eq. (9.186) implies that, for small frequencies,

∆̃(ω) ≃ ∆(0)

[
∫ 0

−∞

dt e(iω+Γ)t +

∫

∞

0

dt e(iω−Γ)t

]

= ∆(0)
2Γ

ω2 + Γ2
. (9.192)

“Small frequencies” certainly means ω ≪ T ; in fact, taking ω → 0 on both sides of Eq. (9.192)
and using Eq. (9.190) yields

1

Γ
∆(0) = lim

ω→0

T

ω
ρ(ω) . (9.193)

We recall that ∆(0) here is given by Eq. (9.184), so that Eq. (9.193) in principle allows to determine
Γ from the slope of the spectral function at zero frequency (which in turn is related to the retarded
correlator, as we expected from Eq. (9.181)). This is an example of a Kubo formula.

Eq. (9.193) looks actually somewhat suspicious. Indeed, consider the free limit. In this case, the
decay rate Γ should disappear. Therefore, the right-hand side should diverge. However, according
to what we saw for the free spectral functions of single particles states (cf. Eqs. (8.36), (8.66)), we
would normally expect the spectral function to be zero at small enough frequencies (|ω| < m), in
which case the right-hand side would vanish.

The resolution to the paradox is that in the free limit the spectral function related to a conserved

charge contains a contribution of the type

ρ(ω) ≃ ∆(0)βω π δ(ω) (9.194)

= ∆(0)βω Im
1

ω − i0+
. (9.195)

Indeed, plugging this into the sum rule in Eq. (8.33), we get

〈

N̂(τ)N̂ (0)
〉

=

∫

∞

−∞

dω

π
ρ(ω)nB(ω)e(β−τ)ω = ∆(0) , (9.196)

which shows that Eq. (9.194) corresponds to a Euclidean correlator which is contant in τ . This, in-
deed, is precisely what we expect from the correlator of a conserved quantity! Plugging Eq. (9.194)
into the right-hand side of Eq. (9.193) we indeed get infinity, so everything is in order after all.
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Now, the structure in Eq. (9.194) is an extreme case of what is called a transport peak in the
spectral function. Once interactions are added, the peak should get smeared, so that the limit in
Eq. (9.193) is finite; in fact, according to Eqs. (9.190), (9.192), it should obtain the form (ω ≪ T )

ρ(ω) ≃ ∆(0)
βωΓ

ω2 + Γ2
(9.197)

= ∆(0)βω Im
1

ω − iΓ
. (9.198)

Therefore, in order to identify the transport coefficients, we need to be able to compute the spectral
function in the range ω ∼ Γ. This is typically difficult because Γ is generated by interactions, and
therefore of the type Γ ∼ g2T , where g is some coupling constant: we need to be able to compute
ρ(ω) for soft energies ω ∼ g2T , where resummations play an important role. In any case, if the
computation is successful, the resulting structure should be of the type

ρ(ω) ≃ ∆(0)
βΓ

ω
+ O(Γ3) , (9.199)

which replaces the vanishing result at non-zero ω that was obtained in the free limit, Eq. (9.194).
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