9.5. Dark matter abundance in cosmology

In this section we continue the considerations of Sec. 9.4. Denoting by $n(t, \mathbf{q})$ the phase space density of right-handed neutrinos in either polarization state,

$$
\begin{equation*}
n(t, \mathbf{q})=\sum_{s=1,2} \frac{\mathrm{~d} N^{(s)}(t, \mathbf{x}, \mathbf{q})}{\mathrm{d}^{3} \mathbf{x} \mathrm{~d}^{3} \mathbf{q}} \tag{9.126}
\end{equation*}
$$

Eq. (9.96) is of the form

$$
\begin{equation*}
\frac{\partial n(t, \mathbf{q})}{\partial t}=R(T, \mathbf{q}) \tag{9.127}
\end{equation*}
$$

where R is given in Eq. (9.125),

$$
\begin{equation*}
R(T, \mathbf{q})=\frac{2 n_{\mathrm{F}}\left(q^{0}\right)}{(2 \pi)^{3} 2 q^{0}} \sum_{\alpha=1}^{3}\left|F_{\alpha}\right|^{2} \operatorname{Tr}\left\{\not \subset a_{L}\left[\rho_{\alpha \alpha}(-Q)+\rho_{\alpha \alpha}(Q)\right] a_{R}\right\} \tag{9.128}
\end{equation*}
$$

This applies in flat spacetime, at a given temperature T. Note that in thermal equilibrium, in the free limit, we would expect $n(t, q)=2 n_{\mathrm{F}}\left(q^{0}\right) /(2 \pi)^{3}$, where the factor 2 comes the polarization sum, and the factor $(2 \pi)^{3}$ from that according to Eq. (9.126), $\sum_{s=1,2} N^{(s)}=\int \mathrm{d}^{3} \mathbf{x} \mathrm{~d}^{3} \mathbf{q} n(t, \mathbf{q})$. For cosmological applications, the first task now is to generalize Eq. (9.127) to an expanding Universe, where the temperature furthermore is a function of time.

In order to carry out the generalization, we first have to give a meaning to our variables, the time t and the momenta \mathbf{q}. In the following we mean by these the physical time and momenta, i.e. the ones defined in a local Minkowskian frame. However, as is well known, local Minkowskian frames at different times are inequivalent in an expanding background; in particular, the physical momenta redshift. Carrying out the derivation of the rate equation in this situation is a topic of general relativity rather than thermal field theory, so we only quote the result here: the upshot is that the time derivative gets replaced with $\partial / \partial t \rightarrow \partial / \partial t-H q_{i} \partial / \partial q_{i}{ }^{46}$, and Eq. (9.125) becomes

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-H q_{i} \frac{\partial}{\partial q_{i}}\right) n(t, \mathbf{q})=R(T, \mathbf{q}), \tag{9.129}
\end{equation*}
$$

where H is the Hubble parameter, $H(t) \equiv \dot{a}(t) / a(t)$, and q_{i} are the spatial components of \mathbf{q}. We will see presently that this form is in any case consistent with the expected redshift $\mathbf{q}(t)=$ $\mathbf{q}\left(t_{0}\right) a\left(t_{0}\right) / a(t)$, where $a(t)$ is the scale factor.

Eq. (9.129) can be written in a simpler form through a change of variables. We note, first of all, that $R(T, \mathbf{q})$ and consequently also $n(t, \mathbf{q})$ are only functions of $q \equiv|\mathbf{q}|$. Changing correspondingly the notation to $n(t, q), R(T, q)$, Eq. (9.129) becomes

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-H q \frac{\partial}{\partial q}\right) n(t, q)=R(T, q) \tag{9.130}
\end{equation*}
$$

Introducing then an ansatz $n(t, q)=n\left(t, q\left(t_{0}\right) \frac{a\left(t_{0}\right)}{a(t)}\right)$, and noting that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[q\left(t_{0}\right) \frac{a\left(t_{0}\right)}{a(t)}\right]=-q\left(t_{0}\right) \frac{a\left(t_{0}\right) \dot{a}(t)}{a^{2}(t)}=-H q, \tag{9.131}
\end{equation*}
$$

Eq. (9.130) can be written as

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} n\left(t, q\left(t_{0}\right) \frac{a\left(t_{0}\right)}{a(t)}\right)=R\left(T, q\left(t_{0}\right) \frac{a\left(t_{0}\right)}{a(t)}\right) . \tag{9.132}
\end{equation*}
$$

[^0]This integrates immediately to

$$
\begin{equation*}
n\left(t_{0}, q\left(t_{0}\right)\right)=\int_{0}^{t_{0}} \mathrm{~d} t R\left(T(t), q\left(t_{0}\right) \frac{a\left(t_{0}\right)}{a(t)}\right) \tag{9.133}
\end{equation*}
$$

where we assumed the initial condition $n(0, q)=0$, i.e., that there are no right-handed neutrinos in the beginning.

At this point we need to recall the basic cosmological relations between the time t and the temperature T. Assuming a homogeneous and isotropic metric,

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t) \mathrm{d} \mathbf{x}_{k}^{2}, \tag{9.134}
\end{equation*}
$$

and the energy-momentum tensor of an ideal fluid,

$$
\begin{equation*}
T_{\mu}{ }^{\nu}=\operatorname{diag}(e,-p,-p,-p), \tag{9.135}
\end{equation*}
$$

where e denotes the energy density and p the pressure, the Einstein equations, $G_{\mu}{ }^{\nu}=8 \pi G T_{\mu}{ }^{\nu}$, reduce to

$$
\begin{align*}
\left(\frac{\dot{a}}{a}\right)^{2}+\frac{k}{a^{2}} & =\frac{8 \pi G}{3} e \tag{9.136}\\
\mathrm{~d}\left(e a^{3}\right) & =-p \mathrm{~d}\left(a^{3}\right) . \tag{9.137}
\end{align*}
$$

We will assume a flat Universe in the following, $k=0$, and denote

$$
\begin{equation*}
\frac{1}{m_{\mathrm{Pl}}^{2}} \equiv G, \tag{9.138}
\end{equation*}
$$

where $m_{\mathrm{Pl}}=1.2 \times 10^{19} \mathrm{GeV}$ is the Planck mass.
We now combine the Einstein equations with basic thermodynamic relations. Assuming a system with at most very small chemical potentials, the energy and entropy densities are related by

$$
\begin{equation*}
e=T s-p, \tag{9.139}
\end{equation*}
$$

where $s=\mathrm{d} p / \mathrm{d} T$ is the entropy density. The derivative of Eq. (9.139) with respect to T yields

$$
\begin{equation*}
\frac{\mathrm{d} e}{\mathrm{~d} T}=T \frac{\mathrm{~d} s}{\mathrm{~d} T}=T c \tag{9.140}
\end{equation*}
$$

where c is the heat capacity. Moving all the terms in Eq. (9.137) to the left-hand side, we get

$$
\begin{align*}
& a^{3} \mathrm{~d} e+3(e+p) a^{2} \mathrm{~d} a=0 \tag{9.141}\\
\Leftrightarrow & \mathrm{~d} e=-3 T s \frac{\mathrm{~d} a}{a} \tag{9.142}\\
\Leftrightarrow & \frac{\mathrm{~d} T}{\mathrm{~d} t} \frac{\mathrm{~d} e}{\mathrm{~d} T}=-3 T s \frac{\dot{a}}{a} \tag{9.143}
\end{align*}
$$

Inserting Eqs. (9.136), (9.138) and (9.140) results finally in

$$
\begin{equation*}
\frac{\mathrm{d} T}{\mathrm{~d} t}=-\frac{\sqrt{24 \pi}}{m_{\mathrm{Pl}}} \frac{s(T) \sqrt{e(T)}}{c(T)} \tag{9.144}
\end{equation*}
$$

In addition, Eq. (9.137) can also be written in terms of the well-known entropy conservation law:

$$
\begin{align*}
0 & =\mathrm{d}\left(e a^{3}\right)+p \mathrm{~d}\left(a^{3}\right) \\
& =\mathrm{d}\left([e+p] a^{3}\right)-a^{3} \mathrm{~d} p \\
& =\mathrm{d}\left(T s a^{3}\right)-a^{3} s \mathrm{~d} T \\
& =T \mathrm{~d}\left(s a^{3}\right), \tag{9.145}
\end{align*}
$$

where we inserted Eq. (9.139) and the definition $s=\mathrm{d} p / \mathrm{d} T$. Eq. (9.145) can in turn be expressed as

$$
\begin{equation*}
\frac{a(t)}{a\left(t_{0}\right)}=\left[\frac{s\left(T_{0}\right)}{s(T)}\right]^{\frac{1}{3}} \tag{9.146}
\end{equation*}
$$

where t and T are related through Eq. (9.144).
It is furthermore conventional to introduce the effective numbers of massless bosonic degrees of freedom $g_{\mathrm{eff}}(T)$ and $h_{\mathrm{eff}}(T)$ via the relations

$$
\begin{equation*}
e(T) \equiv \frac{\pi^{2} T^{4}}{30} g_{\mathrm{eff}}(T), \quad s(T) \equiv \frac{2 \pi^{2} T^{3}}{45} h_{\mathrm{eff}}(T) \tag{9.147}
\end{equation*}
$$

where the prefactors follow by applying Eq. (9.139) and the line below it to the free result $p(T)=$ $\pi^{2} T^{4} / 90$ from Eq. (2.80). Given the equation-of-state of the plasma [i.e. the relation between the pressure and the temperature, $p=p(T)], g_{\mathrm{eff}}(T)$ and $h_{\mathrm{eff}}(T)$ can according to Eq. (9.139) be found from

$$
\begin{equation*}
g_{\mathrm{eff}}(T)=\frac{30}{\pi^{2} T^{2}} \frac{\mathrm{~d}}{\mathrm{~d} T}\left(\frac{p}{T}\right), \quad h_{\mathrm{eff}}(T)=\frac{45}{2 \pi^{2} T^{3}} \frac{\mathrm{~d} p}{\mathrm{~d} T} . \tag{9.148}
\end{equation*}
$$

Furthermore, we note that $s(T) / T c(T)=p^{\prime}(T) / T s^{\prime}(T)=p^{\prime}(T) / e^{\prime}(T)=\partial p / \partial e=c_{s}^{2}(T)$, where we identified the standard expression for the sound speed squared.

Combining Eqs. (9.144), (9.146) and the definitions above, we can now change variables in Eq. (9.133), arriving at $\left(q \equiv q\left(t_{0}\right)\right)$

$$
\begin{equation*}
n\left(t_{0}, q\right)=\int_{T_{0}}^{\infty} \frac{\mathrm{d} T}{T^{3}} \sqrt{\frac{5}{4 \pi^{3}}} \frac{m_{\mathrm{Pl}}}{c_{s}^{2}(T) \sqrt{g_{\mathrm{eff}}(T)}} R\left(T, q \frac{T}{T_{0}}\left[\frac{h_{\mathrm{eff}}(T)}{h_{\mathrm{eff}}\left(T_{0}\right)}\right]^{\frac{1}{3}}\right) . \tag{9.149}
\end{equation*}
$$

The integral over Eq. (9.149) with the measure $\mathrm{d}^{3} \mathbf{q}$ gives the number density of right-handed neutrinos, denoted by $n\left(t_{0}\right)$, which can subsequently be conveniently normalized with respect to the total entropy density, Eq. (9.147), which produces the so-called yield parameter, Y:

$$
\begin{align*}
Y\left(t_{0}\right) & \equiv \frac{n\left(t_{0}\right)}{s\left(t_{0}\right)} \\
& =\frac{45 \times 4 \pi}{2 \pi^{2} T_{0}^{3} h_{\mathrm{eff}}\left(T_{0}\right)} \sqrt{\frac{5}{4 \pi^{3}}} \int_{0}^{\infty} \mathrm{d} q q^{2} \int_{T_{0}}^{\infty} \frac{\mathrm{d} T}{T^{3}} \frac{m_{\mathrm{Pl}}}{c_{s}^{2}(T) \sqrt{g_{\mathrm{eff}}(T)}} R\left(T, T \frac{q}{T_{0}}\left[\frac{h_{\mathrm{eff}}(T)}{h_{\mathrm{eff}}\left(T_{0}\right)}\right]^{\frac{1}{3}}\right) \\
& =\frac{45 \sqrt{5}}{\pi^{5 / 2}} \int_{T_{0}}^{\infty} \frac{\mathrm{d} T}{T^{3}} \int_{0}^{\infty} \mathrm{d} z z^{2} \frac{m_{\mathrm{Pl}}}{c_{s}^{2}(T) h_{\mathrm{eff}}(T) \sqrt{g_{\mathrm{eff}}(T)}} R(T, T z) \tag{9.150}
\end{align*}
$$

where in the last step we substituted $q=z T_{0}\left[h_{\mathrm{eff}}\left(T_{0}\right) / h_{\mathrm{eff}}(T)\right]^{1 / 3}$. Note that Eq. (9.150) obtains a constant value at low temperatures if $R \rightarrow 0$. Therefore the yield parameter is a good (i.e. T_{0}-independent) characterization of the dark matter relic density.

In order to write the result more explicitly, we need to specify the function $R(T, q)$. The relevant information is contained in Eqs. (8.88), (8.89), (9.128). The Dirac algebra in Eq. (9.128) can be carried out:

$$
\begin{equation*}
\operatorname{Tr}\left\{\not Q a_{L}\left[\not P_{1}\right] a_{R}\right\}=2 Q \cdot P_{1} \tag{9.151}
\end{equation*}
$$

Furthermore, this can be written in various ways depending on the channel:

$$
\begin{aligned}
\delta^{(4)}\left(P_{1}+P_{2}-Q\right) 2 Q \cdot P_{1} & =\delta^{(4)}\left(P_{1}+P_{2}-Q\right)\left[P_{1}^{2}+Q^{2}-\left(Q-P_{1}\right)^{2}\right] \\
& =\delta^{(4)}\left(P_{1}+P_{2}-Q\right)\left[P_{1}^{2}+Q^{2}-P_{2}^{2}\right], \\
\delta^{(4)}\left(P_{2}-P_{1}-Q\right) 2 Q \cdot P_{1} & =\delta^{(4)}\left(P_{2}-P_{1}-Q\right)\left[\left(Q+P_{1}\right)^{2}-P_{1}^{2}-Q^{2}\right] \\
& =\delta^{(4)}\left(P_{2}-P_{1}-Q\right)\left[P_{2}^{2}-P_{1}^{2}-Q^{2}\right], \\
\delta^{(4)}\left(P_{1}-P_{2}-Q\right) 2 Q \cdot P_{1} & =\delta^{(4)}\left(P_{1}-P_{2}-Q\right)\left[P_{1}^{2}+Q^{2}-\left(Q-P_{1}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\delta^{(4)}\left(P_{1}-P_{2}-Q\right)\left[P_{1}^{2}+Q^{2}-P_{2}^{2}\right] \\
\delta^{(4)}\left(P_{1}+P_{2}+Q\right) 2 Q \cdot P_{1} & =\delta^{(4)}\left(P_{1}+P_{2}+Q\right)\left[\left(Q+P_{1}\right)^{2}-P_{1}^{2}-Q^{2}\right] \\
& =\delta^{(4)}\left(P_{1}+P_{2}+Q\right)\left[P_{2}^{2}-P_{1}^{2}-Q^{2}\right] \tag{9.152}
\end{align*}
$$

These factors are all constants, independent of the momenta $\mathbf{p}_{1}, \mathbf{p}_{2}$. Thereby we arrive at

$$
\begin{align*}
& R(T, \mathbf{q})=\frac{1}{(2 \pi)^{3} 2 q^{0}} \sum_{\alpha=1}^{3}\left|F_{\alpha}\right|^{2} \sum_{c}\left(m_{\phi_{c}}^{2}-m_{\ell_{c}}^{2}-M^{2}\right) \int \frac{\mathrm{d}^{3} \mathbf{p}_{1}}{(2 \pi)^{3} 2 E_{1}} \int \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{(2 \pi)^{3} 2 E_{2}} \times \\
& \times\left\{-(2 \pi)^{4} \delta^{(4)}\left(P_{1}+P_{2}-Q\right) n_{\mathrm{F} 1} n_{\mathrm{B} 2}+{ }^{1}-\cdots, Q\right. \\
& +(2 \pi)^{4} \delta^{(4)}\left(P_{2}-P_{1}-Q\right) n_{\mathrm{B} 2}\left(1-n_{\mathrm{F} 1}\right)+2-\int_{4}^{1}{ }_{Q} \\
& -(2 \pi)^{4} \delta^{(4)}\left(P_{1}-P_{2}-Q\right) n_{\mathrm{F} 1}\left(1+n_{\mathrm{B} 2}\right)+\quad 1-\overbrace{2}^{2} \\
& \left.+(2 \pi)^{4} \delta^{(4)}\left(P_{1}+P_{2}+Q\right)\left(1-n_{\mathrm{F} 1}\right)\left(1+n_{\mathrm{B} 2}\right)\right\}, \overbrace{\ddots_{2}}^{1} \tag{9.153}
\end{align*}
$$

where $E_{1} \equiv \sqrt{m_{\ell_{c}}^{2}+\mathbf{p}^{2}}, E_{2} \equiv \sqrt{m_{\phi_{c}}^{2}+(\mathbf{p}+\mathbf{q})^{2}}$. In passing, it is interesting to note that Eq. (9.153) resembles very much a collision term of a Boltzmann equation. We briefly recall the structure of the latter in Sec. 9.6.

Let us analyse Eq. (9.153) more precisely. Suppose that $q^{0}>0$. The first question is, when do the different channels get realized? Since all particles are massive, we can go to the rest frame of one of them; it is then clear that the first channel gets realized for $M>m_{\ell_{c}}+m_{\phi_{c}}$; the second for $m_{\phi_{c}}>M+m_{\ell_{c}}$; the third for $m_{\ell_{c}}>M+m_{\phi_{c}}$; and the last one never. So, assuming that the scalar mass (the Higgs mass) is larger than those of the produced particles, $m_{\phi_{c}} \gg M, m_{\ell_{c}}$, we can focus on the second channel, and the integral to be considered is

$$
\begin{equation*}
I \equiv \int \frac{\mathrm{~d}^{3} \mathbf{p}_{1}}{(2 \pi)^{3} 2 E_{1}} \int \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{(2 \pi)^{3} 2 E_{2}}(2 \pi)^{4} \delta^{(4)}\left(P_{2}-P_{1}-Q\right) n_{\mathrm{B}}\left(u \cdot P_{2}\right)\left[1-n_{\mathrm{F}}\left(u \cdot P_{1}\right)\right] \tag{9.154}
\end{equation*}
$$

Here u is the four-velocity of the thermal bath, and we have written the integral in a frameindependent way.

Remarkably, the integral in Eq. (9.154) can be written in a very simple form, in the hightemperature limit where the masses $M^{2}=Q^{2}$ and $m_{\ell_{c}}^{2}=P_{1}^{2}$ of the produced particles can be neglected ${ }^{47}$. Denoting

$$
\begin{equation*}
p \equiv\left|\mathbf{p}_{1}\right|, \quad q \equiv|\mathbf{q}| \tag{9.155}
\end{equation*}
$$

we get

$$
\begin{align*}
I & =\int \frac{\mathrm{d}^{3} \mathbf{p}_{1}}{(2 \pi)^{3} 2 p} \int \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{(2 \pi)^{3} 2 E_{2}}(2 \pi)^{3} \delta^{(3)}\left(\mathbf{p}_{1}+\mathbf{q}-\mathbf{p}_{2}\right)(2 \pi) \delta\left(p+q-E_{2}\right) n_{\mathrm{B}}\left(E_{2}\right)\left[1-n_{\mathrm{F}}(p)\right] \\
& =\frac{1}{(4 \pi)^{2}} \int \frac{\mathrm{~d}^{3} \mathbf{p}_{1}}{p(p+q)} \delta\left(p+q-\sqrt{m_{\phi_{c}}^{2}+\left(\mathbf{p}_{1}+\mathbf{q}\right)^{2}}\right) n_{\mathrm{B}}(p+q)\left[1-n_{\mathrm{F}}(p)\right] \\
& =\frac{1}{8 \pi} \int_{0}^{\infty} \frac{\mathrm{d} p p}{p+q} \int_{-1}^{+1} \mathrm{~d} z \delta\left(p+q-\sqrt{m_{\phi_{c}}^{2}+p^{2}+q^{2}+2 p q z}\right) n_{\mathrm{B}}(p+q)\left[1-n_{\mathrm{F}}(p)\right] \tag{9.156}
\end{align*}
$$

where in the last step radial coordinates were introduced, with \mathbf{q} as the z-axis. The delta function gets realized when

$$
\begin{equation*}
p^{2}+q^{2}+2 p q=m_{\phi_{c}}^{2}+p^{2}+q^{2}+2 p q z \tag{9.157}
\end{equation*}
$$

[^1]i.e. $z=1-m_{\phi_{c}}^{2} / 2 p q$. This belongs to the interval $(-1,1)$ if $p>m_{\phi_{c}}^{2} / 4 q$, so that
\[

$$
\begin{equation*}
I=\frac{1}{8 \pi} \int_{m_{\phi_{c}}^{2} / 4 q}^{\infty} \frac{\mathrm{d} p p}{p+q}\left|\frac{\mathrm{~d}}{\mathrm{~d} z} \sqrt{m_{\phi_{c}}^{2}+p^{2}+q^{2}+2 p q z}\right|_{\sqrt{m_{\phi_{c}}^{2}+p^{2}+q^{2}+2 p q z}=p+q}^{-1} n_{\mathrm{B}}(p+q)\left[1-n_{\mathrm{F}}(p)\right] \tag{9.158}
\end{equation*}
$$

\]

The derivative is trivial,

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} z} \sqrt{\cdots}\right|_{\ldots}=\frac{p q}{p+q} \tag{9.159}
\end{equation*}
$$

whereby we finally arrive at

$$
\begin{align*}
I & =\frac{1}{8 \pi q} \int_{m_{\phi_{c}}^{2} / 4 q}^{\infty} \mathrm{d} p n_{\mathrm{B}}(p+q)\left[1-n_{\mathrm{F}}(p)\right] \\
& =\frac{T}{8 \pi q} \int_{0}^{\infty} \mathrm{d} x n_{\mathrm{B}}\left(T x+q+\frac{m_{\phi_{c}}^{2}}{4 q}\right)\left[1-n_{\mathrm{F}}\left(T x+\frac{m_{\phi_{c}}^{2}}{4 q}\right)\right] \tag{9.160}
\end{align*}
$$

In the last step we substituted $p=m_{\phi_{c}}^{2} / 4 q+T x$.
We can easily work out an upper bound for this integral if we make the further approximation that $T \ll m_{\phi_{c}}$. Indeed, $1-n_{\mathrm{F}} \leq 1$, and

$$
\begin{equation*}
q+\frac{m_{\phi_{c}}^{2}}{4 q}=m_{\phi_{c}}+\frac{2}{m_{\phi_{c}}}\left(q-\frac{m_{\phi_{c}}}{2}\right)^{2}+\ldots \geq m_{\phi_{c}} \tag{9.161}
\end{equation*}
$$

Thereby the distribution function n_{B} can to a good approximation be replaced by the Boltzmann distribution, whereby

$$
\begin{equation*}
I \lesssim \frac{T}{8 \pi q} \int_{0}^{\infty} \mathrm{d} x e^{-x-\beta\left(q+\frac{m_{\phi_{c}}^{2}}{4 q}\right)}=\frac{T}{8 \pi q} e^{-\beta\left(q+\frac{m_{\phi_{c}}^{2}}{4 q}\right)} \tag{9.162}
\end{equation*}
$$

Inserting Eq. (9.162) into Eq. (9.153), we get

$$
\begin{equation*}
R(T, q) \lesssim \frac{1}{(2 \pi)^{3} 2 q} \sum_{\alpha=1}^{3}\left|F_{\alpha}\right|^{2} \sum_{c} m_{\phi_{c}}^{2} \frac{T}{8 \pi q} e^{-\beta\left(q+\frac{m_{\phi_{c}}^{2}}{4 q}\right)} \tag{9.163}
\end{equation*}
$$

Combining now with Eq. (9.150) produces

$$
\begin{align*}
Y\left(t_{0}\right) & \lesssim \frac{45 \sqrt{5}}{\pi^{5 / 2}} \frac{1}{128 \pi^{4}} \sum_{\alpha=1}^{3}\left|F_{\alpha}\right|^{2} \sum_{c} m_{\phi_{c}}^{2} \int_{T_{0}}^{\infty} \frac{\mathrm{d} T}{T^{2}} \int_{0}^{\infty} \frac{\mathrm{d} z z^{2}}{T^{2} z^{2}} \frac{m_{\mathrm{Pl}}}{c_{s}^{2}(T) h_{\mathrm{eff}}(T) \sqrt{g_{\mathrm{eff}}(T)}} e^{-\left(z+\frac{m_{\phi_{c}}^{2}}{4 T^{2} z}\right)} \\
& =\frac{45 \sqrt{5}}{64 \pi^{13 / 2}} \sum_{\alpha=1}^{3}\left|F_{\alpha}\right|^{2} \sum_{c} m_{\phi_{c}}^{2} \int_{T_{0}}^{\infty} \frac{\mathrm{d} T}{T^{4}} \frac{m_{\mathrm{Pl}}}{c_{s}^{2}(T) h_{\mathrm{eff}}(T) \sqrt{g_{\mathrm{eff}}(T)}} K_{1}\left(\frac{m_{\phi_{c}}}{T}\right) \tag{9.164}
\end{align*}
$$

where K_{1} is a Bessel function. For $m_{\phi_{c}} / T \gg 1$, we can finally approximate

$$
\begin{equation*}
K_{1}\left(\frac{m_{\phi_{c}}}{T}\right) \approx \sqrt{\frac{\pi T}{2 m_{\phi_{c}}}} e^{-\beta m_{\phi_{c}}} \tag{9.165}
\end{equation*}
$$

and if we approximate $c_{s}^{2}, h_{\text {eff }}$ and $g_{\text {eff }}$ to be slowly varying, the remaining integral can be carried out:

$$
\begin{align*}
& \int_{T_{0}}^{\infty} \frac{\mathrm{d} T}{T^{4}} f(T) \sqrt{\frac{\pi T}{2 m_{\phi_{c}}}} e^{-\beta m_{\phi_{c}}} \stackrel{T=m_{\phi_{c}} x}{\approx} \\
& \frac{1}{m_{\phi_{c}}^{3}} \sqrt{\frac{\pi}{2}} \int_{0}^{\infty} \mathrm{d} x x^{-7 / 2} f\left(m_{\phi_{c}} x\right) e^{-1 / x} \\
& \stackrel{y=1 / x}{=} \frac{1}{m_{\phi_{c}}^{3}} \sqrt{\frac{\pi}{2}} \int_{0}^{\infty} \mathrm{d} y y^{3 / 2} f\left(\frac{m_{\phi_{c}}}{y}\right) e^{-y} \tag{9.166}\\
& \simeq \frac{1}{m_{\phi_{c}}^{3}} \sqrt{\frac{\pi}{2}} \Gamma\left(\frac{5}{2}\right) f\left(\frac{m_{\phi_{c}}}{2}\right)
\end{align*}
$$

where we replaced y in the argument of f by the value where the integral has obtained about 50% of its total magnitude. Thereby most of the dark matter abundance is indeed generated at temperatures $T \lesssim m_{\phi_{c}}$, and

$$
\begin{equation*}
Y\left(t_{0}\right) \lesssim \frac{135 \sqrt{5}}{256 \sqrt{2} \pi^{11 / 2}} \sum_{\alpha=1}^{3}\left|F_{\alpha}\right|^{2} \sum_{c} \frac{m_{\mathrm{Pl}}}{m_{\phi_{c}}} \frac{1}{c_{s}^{2}\left(\frac{m_{\phi_{c}}}{2}\right) h_{\mathrm{eff}}\left(\frac{m_{\phi_{c}}}{2}\right) \sqrt{g_{\mathrm{eff}}\left(\frac{m_{\phi_{c}}}{2}\right)}} \tag{9.167}
\end{equation*}
$$

where we inserted $\Gamma(5 / 2)=3 \sqrt{\pi} / 4$.
Eq. (9.167) displays clearly the variables on which the dark matter abundance related to a specific mechanism depends on: the coupling constants $\left(\left|F_{\alpha}\right|^{2}\right)$, the mass of the decaying particle $\left(m_{\phi_{c}}\right)$, as well as the thermal history of the Universe (the functions $c_{s}^{2}, h_{\mathrm{eff}}, g_{\mathrm{eff}}$).

9.6. Appendix: relativistic Boltzmann equation

We recall here briefly the structure of the collision terms of a relativistic Boltzmann equation, and compare the result with the quantum field theoretic formula in Eq. (9.153).

To understand the logic of the Boltzmann equation, a possible starting point is Fermi's Golden Rule for a decay rate:

$$
\begin{equation*}
\Gamma_{1 \rightarrow n}(Q)=\frac{c}{2 E_{\mathbf{q}}} \int \mathrm{d} \Phi_{1 \rightarrow n}\left|\mathcal{M}_{1 \rightarrow n}\right|^{2} \tag{9.168}
\end{equation*}
$$

where the phase space integration measure is defined as

$$
\begin{equation*}
\int \mathrm{d} \Phi_{1+m \rightarrow n} \equiv \int\left\{\prod_{a=1}^{m} \frac{\mathrm{~d}^{3} \mathbf{q}_{a}}{(2 \pi)^{3} 2 E_{\mathbf{q}_{a}}}\right\}\left\{\prod_{i=1}^{n} \frac{\mathrm{~d}^{3} \mathbf{p}_{i}}{(2 \pi)^{3} 2 E_{\mathbf{p}_{i}}}\right\}(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} P_{i}-Q-\sum_{a=1}^{m} Q_{a}\right) \tag{9.169}
\end{equation*}
$$

Moreover, c is a statistical factor and \mathcal{M} is the scattering amplitude.
Let now $f(x, \mathbf{q})$ be a particle distribution function; we assume its normalization to be so chosen that the total number density of particles at x is given by

$$
\begin{equation*}
n(x)=\int \frac{\mathrm{d}^{3} \mathbf{q}}{(2 \pi)^{3}} f(x, \mathbf{q}) \tag{9.170}
\end{equation*}
$$

In particular, in thermal equilibrium, $f(x, \mathbf{q}) \equiv n_{\mathrm{F}}\left(E_{\mathbf{q}}\right)$ (or $f(x, \mathbf{q}) \equiv n_{\mathrm{B}}\left(E_{\mathbf{q}}\right)$ for bosons) is independent of the position x, and determined uniquely by the temperature (and by possible chemical potentials). At the same time, in vacuum, assuming a single plane wave regularized by a finite volume V, we would have

$$
\begin{equation*}
f(x, \mathbf{q})=\frac{(2 \pi)^{3}}{V} \delta^{(3)}\left(\mathbf{q}-\mathbf{q}_{0}\right) \tag{9.171}
\end{equation*}
$$

the logic is that then $n(x)$, as defined by Eq. (9.170), evaluates to $1 / V$, while $f\left(x, \mathbf{q}_{0}\right)=1$, where we made use of $\delta^{(3)}(\mathbf{0})=V /(2 \pi)^{3}$.

To convert Eq. (9.168) into a Boltzmann equation, we identify the decay rate Γ by $-\partial_{t} f / f$ for the plane wave case, and deform then the structure to be Lorentz-covariant:

$$
\begin{equation*}
E_{\mathbf{q}} \Gamma \Rightarrow-E_{\mathbf{q}} \frac{\partial f_{N}}{\partial t} \frac{1}{f_{N}} \Rightarrow-q^{\alpha} \frac{\partial f_{N}}{\partial x^{\alpha}} \frac{1}{f_{N}} . \tag{9.172}
\end{equation*}
$$

We also modify the right-hand side of Eq. (9.168) by allowing for $1+m$ particles in the initial state, and adding Bose enhancement and Fermi blocking factors. Thereby

$$
\begin{align*}
& q^{\alpha} \frac{\partial f_{N}}{\partial x^{\alpha}}=-\frac{c}{2} \sum_{m, n} \int \mathrm{~d} \Phi_{N+m \rightarrow n} \\
& \times \quad\left\{|\mathcal{M}|_{N+m \rightarrow n}^{2} f_{N} f_{a} \cdots f_{m}\left(1 \pm f_{i}\right) \cdots\left(1 \pm f_{n}\right)\right. \\
& \left.\quad-|\mathcal{M}|_{n \rightarrow N+m}^{2} f_{i} \cdots f_{n}\left(1 \pm f_{N}\right)\left(1 \pm f_{a}\right) \cdots\left(1 \pm f_{m}\right)\right\} \tag{9.173}
\end{align*}
$$

Here + applies for bosons and - for fermions.
Let us compare this with Eq. (9.153). We may observe that Eq. (9.153) corresponds to the gain terms of Eq. (9.173) (i.e. the last row), since the right-handed neutrinos are (by assumption) non-thermal and escape: $f_{N} \equiv 0$. At the same time, to obtain a complete match, we should work out the scattering matrix elements, $|\mathcal{M}|^{2}$, and the statistical factors, c. The "strength" of the quantum field theoretic computation leading to Eq. (9.153) is that these automatically obtain their correct values; its weakness is the allowing for (perhaps partial) equilibration is not possible with Eq. (9.153), but can be achieved through the non-linear dependence of Eq. (9.173) on f_{N}.

[^0]: ${ }^{46}$ J. Bernstein, Kinetic Theory in the Expanding Universe (Cambridge University Press, Cambridge, 1988); E.W. Kolb and M.S. Turner, The Early Universe (Addison-Wesley, Reading, 1990).

[^1]: ${ }^{47}$ M. Shaposhnikov, unpublished notes.

