
9.5. Dark matter abundance in cosmology

In this section we continue the considerations of Sec. 9.4. Denoting by n(t,q) the phase space
density of right-handed neutrinos in either polarization state,

n(t,q) =
∑

s=1,2

dN (s)(t,x,q)

d3xd3q
, (9.126)

Eq. (9.96) is of the form
∂n(t,q)

∂t
= R(T,q) , (9.127)

where R is given in Eq. (9.125),

R(T,q) =
2nF(q0)

(2π)32q0

3
∑

α=1

|Fα|2Tr
{

/Q aL

[

ραα(−Q) + ραα(Q)
]

aR

}

. (9.128)

This applies in flat spacetime, at a given temperature T . Note that in thermal equilibrium, in
the free limit, we would expect n(t, q) = 2nF(q0)/(2π)3, where the factor 2 comes the polarization
sum, and the factor (2π)3 from that according to Eq. (9.126),

∑

s=1,2 N (s) =
∫

d3xd3qn(t,q). For
cosmological applications, the first task now is to generalize Eq. (9.127) to an expanding Universe,
where the temperature furthermore is a function of time.

In order to carry out the generalization, we first have to give a meaning to our variables, the
time t and the momenta q. In the following we mean by these the physical time and momenta,
i.e. the ones defined in a local Minkowskian frame. However, as is well known, local Minkowskian
frames at different times are inequivalent in an expanding background; in particular, the physical
momenta redshift. Carrying out the derivation of the rate equation in this situation is a topic of
general relativity rather than thermal field theory, so we only quote the result here: the upshot is
that the time derivative gets replaced with ∂/∂t → ∂/∂t− Hqi∂/∂qi

46, and Eq. (9.125) becomes

(

∂

∂t
− Hqi

∂

∂qi

)

n(t,q) = R(T,q) , (9.129)

where H is the Hubble parameter, H(t) ≡ ȧ(t)/a(t), and qi are the spatial components of q.
We will see presently that this form is in any case consistent with the expected redshift q(t) =
q(t0) a(t0)/a(t), where a(t) is the scale factor.

Eq. (9.129) can be written in a simpler form through a change of variables. We note, first of all,
that R(T,q) and consequently also n(t,q) are only functions of q ≡ |q|. Changing correspondingly
the notation to n(t, q), R(T, q), Eq. (9.129) becomes

(

∂

∂t
− Hq

∂

∂q

)

n(t, q) = R(T, q) . (9.130)

Introducing then an ansatz n(t, q) = n(t, q(t0)
a(t0)
a(t) ), and noting that

d

dt

[

q(t0)
a(t0)

a(t)

]

= −q(t0)
a(t0)ȧ(t)

a2(t)
= −Hq , (9.131)

Eq. (9.130) can be written as

d

dt
n
(

t, q(t0)
a(t0)

a(t)

)

= R
(

T, q(t0)
a(t0)

a(t)

)

. (9.132)

46J. Bernstein, Kinetic Theory in the Expanding Universe (Cambridge University Press, Cambridge, 1988);
E.W. Kolb and M.S. Turner, The Early Universe (Addison-Wesley, Reading, 1990).
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This integrates immediately to

n(t0, q(t0)) =

∫ t0

0

dt R
(

T (t), q(t0)
a(t0)

a(t)

)

, (9.133)

where we assumed the initial condition n(0, q) = 0, i.e., that there are no right-handed neutrinos
in the beginning.

At this point we need to recall the basic cosmological relations between the time t and the
temperature T . Assuming a homogeneous and isotropic metric,

ds2 = dt2 − a2(t) dx2
k , (9.134)

and the energy-momentum tensor of an ideal fluid,

Tµ
ν = diag(e,−p,−p,−p) , (9.135)

where e denotes the energy density and p the pressure, the Einstein equations, Gµ
ν = 8πGTµ

ν ,
reduce to

(

ȧ

a

)2

+
k

a2
=

8πG

3
e , (9.136)

d(ea3) = −p d(a3) . (9.137)

We will assume a flat Universe in the following, k = 0, and denote

1

m2
Pl

≡ G , (9.138)

where mPl = 1.2 × 1019 GeV is the Planck mass.

We now combine the Einstein equations with basic thermodynamic relations. Assuming a system
with at most very small chemical potentials, the energy and entropy densities are related by

e = Ts− p , (9.139)

where s = dp/dT is the entropy density. The derivative of Eq. (9.139) with respect to T yields

de

dT
= T

ds

dT
= Tc , (9.140)

where c is the heat capacity. Moving all the terms in Eq. (9.137) to the left-hand side, we get

a3de + 3(e + p)a2da = 0 (9.141)

⇔ de = −3Ts
da

a
(9.142)

⇔ dT

dt

de

dT
= −3Ts

ȧ

a
. (9.143)

Inserting Eqs. (9.136), (9.138) and (9.140) results finally in

dT

dt
= −

√
24π

mPl

s(T )
√

e(T )

c(T )
. (9.144)

In addition, Eq. (9.137) can also be written in terms of the well-known entropy conservation law:

0 = d(ea3) + p d(a3)

= d([e + p]a3) − a3dp

= d(Tsa3) − a3sdT

= Td(sa3) , (9.145)
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where we inserted Eq. (9.139) and the definition s = dp/dT . Eq. (9.145) can in turn be expressed
as

a(t)

a(t0)
=

[

s(T0)

s(T )

]
1

3

, (9.146)

where t and T are related through Eq. (9.144).

It is furthermore conventional to introduce the effective numbers of massless bosonic degrees of
freedom geff(T ) and heff(T ) via the relations

e(T ) ≡ π2T 4

30
geff(T ) , s(T ) ≡ 2π2T 3

45
heff(T ) , (9.147)

where the prefactors follow by applying Eq. (9.139) and the line below it to the free result p(T ) =
π2T 4/90 from Eq. (2.80). Given the equation-of-state of the plasma [i.e. the relation between the
pressure and the temperature, p = p(T )], geff(T ) and heff(T ) can according to Eq. (9.139) be found
from

geff(T ) =
30

π2T 2

d

dT

( p

T

)

, heff(T ) =
45

2π2T 3

dp

dT
. (9.148)

Furthermore, we note that s(T )/T c(T ) = p′(T )/Ts′(T ) = p′(T )/e′(T ) = ∂p/∂e = c2
s(T ), where we

identified the standard expression for the sound speed squared.

Combining Eqs. (9.144), (9.146) and the definitions above, we can now change variables in
Eq. (9.133), arriving at (q ≡ q(t0))

n(t0, q) =

∫

∞

T0

dT

T 3

√

5

4π3

mPl

c2
s(T )

√

geff(T )
R

(

T, q
T

T0

[

heff(T )

heff(T0)

]
1

3

)

. (9.149)

The integral over Eq. (9.149) with the measure d3q gives the number density of right-handed
neutrinos, denoted by n(t0), which can subsequently be conveniently normalized with respect to
the total entropy density, Eq. (9.147), which produces the so-called yield parameter, Y :

Y (t0) ≡ n(t0)

s(t0)

=
45 × 4π

2π2T 3
0 heff(T0)

√

5

4π3

∫

∞

0

dq q2

∫

∞

T0

dT

T 3

mPl

c2
s(T )

√

geff(T )
R

(

T, T
q

T0

[

heff(T )

heff(T0)

]
1

3

)

=
45

√
5

π5/2

∫

∞

T0

dT

T 3

∫

∞

0

dz z2 mPl

c2
s(T )heff(T )

√

geff(T )
R (T, T z) , (9.150)

where in the last step we substituted q = zT0[heff(T0)/heff(T )]1/3. Note that Eq. (9.150) obtains
a constant value at low temperatures if R → 0. Therefore the yield parameter is a good (i.e.
T0-independent) characterization of the dark matter relic density.

In order to write the result more explicitly, we need to specify the function R(T, q). The relevant
information is contained in Eqs. (8.88), (8.89), (9.128). The Dirac algebra in Eq. (9.128) can be
carried out:

Tr
{

/Q aL

[

/P 1

]

aR

}

= 2Q · P1 . (9.151)

Furthermore, this can be written in various ways depending on the channel:

δ(4)(P1 + P2 − Q) 2Q · P1 = δ(4)(P1 + P2 − Q)[P 2
1 + Q2 − (Q − P1)

2]

= δ(4)(P1 + P2 − Q)[P 2
1 + Q2 − P 2

2 ] ,

δ(4)(P2 − P1 − Q) 2Q · P1 = δ(4)(P2 − P1 − Q)[(Q + P1)
2 − P 2

1 − Q2]

= δ(4)(P2 − P1 − Q)[P 2
2 − P 2

1 − Q2] ,

δ(4)(P1 − P2 − Q) 2Q · P1 = δ(4)(P1 − P2 − Q)[P 2
1 + Q2 − (Q − P1)

2]
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= δ(4)(P1 − P2 − Q)[P 2
1 + Q2 − P 2

2 ] ,

δ(4)(P1 + P2 + Q) 2Q · P1 = δ(4)(P1 + P2 + Q)[(Q + P1)
2 − P 2

1 − Q2]

= δ(4)(P1 + P2 + Q)[P 2
2 − P 2

1 − Q2] . (9.152)

These factors are all constants, independent of the momenta p1,p2. Thereby we arrive at

R(T,q) =
1

(2π)32q0

3
∑

α=1

|Fα|2
∑

c

(m2
φc

− m2
ℓc
− M2)

∫

d3p1

(2π)32E1

∫

d3p2

(2π)32E2
×

×
{

− (2π)4δ(4)(P1 + P2 − Q)nF1nB2 +
1

2 Q

+ (2π)4δ(4)(P2 − P1 − Q)nB2(1 − nF1) + 2

1

Q

− (2π)4δ(4)(P1 − P2 − Q)nF1(1 + nB2) + 1

2

Q

+ (2π)4δ(4)(P1 + P2 + Q) (1 − nF1)(1 + nB2)

}

,
1

Q

2

(9.153)

where E1 ≡
√

m2
ℓc

+ p2, E2 ≡
√

m2
φc

+ (p + q)2. In passing, it is interesting to note that

Eq. (9.153) resembles very much a collision term of a Boltzmann equation. We briefly recall
the structure of the latter in Sec. 9.6.

Let us analyse Eq. (9.153) more precisely. Suppose that q0 > 0. The first question is, when do
the different channels get realized? Since all particles are massive, we can go to the rest frame of
one of them; it is then clear that the first channel gets realized for M > mℓc

+ mφc
; the second

for mφc
> M + mℓc

; the third for mℓc
> M + mφc

; and the last one never. So, assuming that the
scalar mass (the Higgs mass) is larger than those of the produced particles, mφc

≫ M, mℓc
, we

can focus on the second channel, and the integral to be considered is

I ≡
∫

d3p1

(2π)32E1

∫

d3p2

(2π)32E2
(2π)4δ(4)(P2 − P1 − Q)nB(u · P2)[1 − nF(u · P1)] . (9.154)

Here u is the four-velocity of the thermal bath, and we have written the integral in a frame-
independent way.

Remarkably, the integral in Eq. (9.154) can be written in a very simple form, in the high-
temperature limit where the masses M2 = Q2 and m2

ℓc
= P 2

1 of the produced particles can be
neglected47. Denoting

p ≡ |p1| , q ≡ |q| , (9.155)

we get

I =

∫

d3p1

(2π)32p

∫

d3p2

(2π)32E2
(2π)3δ(3)(p1 + q − p2) (2π)δ(p + q − E2)nB(E2)[1 − nF(p)]

=
1

(4π)2

∫

d3p1

p(p + q)
δ
(

p + q −
√

m2
φc

+ (p1 + q)2
)

nB(p + q)[1 − nF(p)]

=
1

8π

∫

∞

0

dp p

p + q

∫ +1

−1

dz δ
(

p + q −
√

m2
φc

+ p2 + q2 + 2pqz
)

nB(p + q)[1 − nF(p)] , (9.156)

where in the last step radial coordinates were introduced, with q as the z-axis. The delta function
gets realized when

p2 + q2 + 2pq = m2
φc

+ p2 + q2 + 2pqz , (9.157)

47M. Shaposhnikov, unpublished notes.

148



i.e. z = 1 − m2
φc

/2pq. This belongs to the interval (−1, 1) if p > m2
φc

/4q, so that

I =
1

8π

∫

∞

m2

φc
/4q

dp p

p + q

∣

∣

∣

∣

d

dz

√

m2
φc

+ p2 + q2 + 2pqz

∣

∣

∣

∣

−1

√
m2

φc
+p2+q2+2pqz=p+q

nB(p + q)[1 − nF(p)] .

(9.158)
The derivative is trivial,

d

dz

√
· · ·

∣

∣

∣

∣

···

=
pq

p + q
, (9.159)

whereby we finally arrive at

I =
1

8πq

∫

∞

m2

φc
/4q

dp nB(p + q)[1 − nF(p)]

=
T

8πq

∫

∞

0

dxnB

(

Tx + q +
m2

φc

4q

)[

1 − nF

(

Tx +
m2

φc

4q

)]

. (9.160)

In the last step we substituted p = m2
φc

/4q + Tx.

We can easily work out an upper bound for this integral if we make the further approximation
that T ≪ mφc

. Indeed, 1 − nF ≤ 1, and

q +
m2

φc

4q
= mφc

+
2

mφc

(

q − mφc

2

)2

+ . . . ≥ mφc
. (9.161)

Thereby the distribution function nB can to a good approximation be replaced by the Boltzmann
distribution, whereby

I <∼
T

8πq

∫

∞

0

dx e
−x−β

„

q+
m2

φc
4q

«

=
T

8πq
e
−β

„

q+
m2

φc
4q

«

. (9.162)

Inserting Eq. (9.162) into Eq. (9.153), we get

R(T, q) <∼
1

(2π)32q

3
∑

α=1

|Fα|2
∑

c

m2
φc

T

8πq
e
−β

„

q+
m2

φc
4q

«

. (9.163)

Combining now with Eq. (9.150) produces

Y (t0) <∼
45

√
5

π5/2

1

128π4

3
∑

α=1

|Fα|2
∑

c

m2
φc

∫

∞

T0

dT

T 2

∫

∞

0

dz z2

T 2z2

mPl

c2
s(T )heff(T )

√

geff(T )
e
−

„

z+
m2

φc

4T2z

«

=
45

√
5

64π13/2

3
∑

α=1

|Fα|2
∑

c

m2
φc

∫

∞

T0

dT

T 4

mPl

c2
s(T )heff(T )

√

geff(T )
K1

(mφc

T

)

, (9.164)

where K1 is a Bessel function. For mφc
/T ≫ 1, we can finally approximate

K1

(mφc

T

)

≈
√

πT

2mφc

e−βmφc , (9.165)

and if we approximate c2
s, heff and geff to be slowly varying, the remaining integral can be carried

out:
∫

∞

T0

dT

T 4
f(T )

√

πT

2mφc

e−βmφc

T=mφcx
≈ 1

m3
φc

√

π

2

∫

∞

0

dxx−7/2f(mφc
x)e−1/x

y=1/x
=

1

m3
φc

√

π

2

∫

∞

0

dy y3/2f
(mφc

y

)

e−y

≃ 1

m3
φc

√

π

2
Γ
(5

2

)

f
(mφc

2

)

, (9.166)
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where we replaced y in the argument of f by the value where the integral has obtained about
50% of its total magnitude. Thereby most of the dark matter abundance is indeed generated at
temperatures T <∼mφc

, and

Y (t0) <∼
135

√
5

256
√

2π11/2

3
∑

α=1

|Fα|2
∑

c

mPl

mφc

1

c2
s

(

mφc

2

)

heff

(

mφc

2

)

√

geff

(

mφc

2

)

, (9.167)

where we inserted Γ(5/2) = 3
√

π/4.

Eq. (9.167) displays clearly the variables on which the dark matter abundance related to a specific
mechanism depends on: the coupling constants (|Fα|2), the mass of the decaying particle (mφc

),
as well as the thermal history of the Universe (the functions c2

s, heff, geff).
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9.6. Appendix: relativistic Boltzmann equation

We recall here briefly the structure of the collision terms of a relativistic Boltzmann equation, and
compare the result with the quantum field theoretic formula in Eq. (9.153).

To understand the logic of the Boltzmann equation, a possible starting point is Fermi’s Golden
Rule for a decay rate:

Γ1→n(Q) =
c

2Eq

∫

dΦ1→n |M1→n|2 , (9.168)

where the phase space integration measure is defined as

∫

dΦ1+m→n ≡
∫

{

m
∏

a=1

d3qa

(2π)32Eqa

} {

n
∏

i=1

d3pi

(2π)32Epi

}

(2π)4δ(4)(
n

∑

i=1

Pi − Q −
m

∑

a=1

Qa) .

(9.169)

Moreover, c is a statistical factor and M is the scattering amplitude.

Let now f(x,q) be a particle distribution function; we assume its normalization to be so chosen
that the total number density of particles at x is given by

n(x) =

∫

d3q

(2π)3
f(x,q) . (9.170)

In particular, in thermal equilibrium, f(x,q) ≡ nF(Eq) (or f(x,q) ≡ nB(Eq) for bosons) is
independent of the position x, and determined uniquely by the temperature (and by possible
chemical potentials). At the same time, in vacuum, assuming a single plane wave regularized by a
finite volume V , we would have

f(x,q) =
(2π)3

V
δ(3)(q − q0) ; (9.171)

the logic is that then n(x), as defined by Eq. (9.170), evaluates to 1/V , while f(x,q0) = 1, where
we made use of δ(3)(0) = V/(2π)3.

To convert Eq. (9.168) into a Boltzmann equation, we identify the decay rate Γ by −∂tf/f for
the plane wave case, and deform then the structure to be Lorentz-covariant:

EqΓ ⇒ −Eq

∂fN

∂t

1

fN
⇒ −qα ∂fN

∂xα

1

fN
. (9.172)

We also modify the right-hand side of Eq. (9.168) by allowing for 1 + m particles in the initial
state, and adding Bose enhancement and Fermi blocking factors. Thereby

qα ∂fN

∂xα
= − c

2

∑

m,n

∫

dΦN+m→n

×
{

|M|2N+m→nfNfa · · · fm(1 ± fi) · · · (1 ± fn)

−|M|2n→N+mfi · · · fn(1 ± fN )(1 ± fa) · · · (1 ± fm)
}

. (9.173)

Here + applies for bosons and − for fermions.

Let us compare this with Eq. (9.153). We may observe that Eq. (9.153) corresponds to the
gain terms of Eq. (9.173) (i.e. the last row), since the right-handed neutrinos are (by assumption)
non-thermal and escape: fN ≡ 0. At the same time, to obtain a complete match, we should
work out the scattering matrix elements, |M|2, and the statistical factors, c. The “strength” of
the quantum field theoretic computation leading to Eq. (9.153) is that these automatically obtain
their correct values; its weakness is the allowing for (perhaps partial) equilibration is not possible
with Eq. (9.153), but can be achieved through the non-linear dependence of Eq. (9.173) on fN .
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