
9.4. Particle production rate

Let us consider a system where some particles interact strongly enough to remain in thermal
equilibrium, while others interact so weakly that they cannot follow thermal equilibrium. We can
imagine that particles of the latter type “escape” from the thermal system, either concretely (if
the system is of finite size) or in an abstract sense (being still within the same volume as the
thermal particles but not interacting with them). Familiar physical examples of such settings are
(i) the “decoupling” of weakly interacting dark matter particles in cosmology; (ii) the production of
electromagnetic “hard probes”, such as photons and µ−µ+-pairs, from the QCD plasma generated
in heavy ion collision experiments; (iii) the neutrino “emissivity” of neutron stars, constituting the
most important process by which compact objects in astrophysics may cool down.

The purpose of this section is to develop the general formalism for addressing this phenomenon44.
To keep the discussion concrete, we choose a particular example, however: the production of right-
handed neutrinos within the model of Eq. (8.69),

LM =
1

2
¯̃Ni /∂ Ñ −

1

2
M ¯̃NÑ − FαL̄αφ̃ aRÑ − F ∗

α
¯̃Nφ̃†aLLα + LMSM , (9.86)

where we have added the Lagrangian LMSM of the Minimal Standard Model (MSM), describing
the thermalized degrees of freedom. The goal for now is to derive a master equation relating the
production rate of N ’s to a certain Green’s function, evaluated already in Sec. 8.2. In the next
section, we then combine all ingredients and show how the dark matter abundance can be evaluated
in practice.

Let ρ̂ be the density matrix of the full theory, incorporating all degrees of freedom, and Ĥ the
corresponding full Hamiltonian operator. Then the equation for the density matrix is45

i
dρ̂(t)

dt
= [Ĥ, ρ̂(t)] . (9.87)

We now split Ĥ in the form
Ĥ = ĤMSM + ĤN + Ĥint , (9.88)

where ĤMSM is the Hamiltonian of the MSM, ĤN is the free Hamiltonian of right-handed neutrinos,
and Ĥint, which is proportional to the neutrino Yukawa couplings, contains the interactions between
right-handed neutrinos and the particles of the MSM:

Ĥint =

∫

d3x
[

Fα
ˆ̄Lα

ˆ̃φaR N̂ + F ∗
α

ˆ̄N ˆ̃φ
†

aLL̂α

]

. (9.89)

Here now N̂ is a Majorana spinor field operator. To find the concentration of right-handed neu-
trinos, one has to solve Eq. (9.87) with some initial condition. We will assume that the initial
concentration of right-handed neutrinos is zero, that is

ρ̂(0) = ρ̂MSM ⊗ |0〉〈0| , (9.90)

where ρ̂MSM = Z−1
MSM exp(−βĤMSM), β ≡ 1/T , is the equilibrium MSM density matrix at a

temperature T , and |0〉 is the vacuum state for right-handed neutrinos.

Considering now Ĥ0 = ĤMSM+ĤN as a “free” Hamiltonian, and Ĥint as an interaction term, one
can derive an equation for the density matrix in the interaction picture, ρ̂I ≡ exp(iĤ0t)ρ̂ exp(−iĤ0t),

44We follow the presentation in T. Asaka, M. Laine and M. Shaposhnikov, On the hadronic contribution to sterile

neutrino production, JHEP 06 (2006) 053 [hep-ph/0605209].
45

i
d

dt
|ψ〉 = Ĥ|ψ〉 , −i

d

dt
〈ψ| = 〈ψ|Ĥ ⇒ i

d

dt
|ψ〉〈ψ| = [Ĥ, |ψ〉〈ψ|] ⇒ i

d

dt
ρ̂(t) = [Ĥ, ρ̂(t)] .
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in the standard way:

i
d

dt
ρ̂I(t) = −Ĥ0ρ̂I + eiĤ0t[Ĥ, ρ̂(t)]e−iĤ0t + ρ̂IĤ0

= −Ĥ0ρ̂I + eiĤ0t[Ĥ0+Ĥint, ρ̂(t)]e−iĤ0t + ρ̂IĤ0

= eiĤ0t[Ĥint, ρ̂(t)]e−iĤ0t

= eiĤ0tĤinte
−iĤ0teiĤ0tρ̂(t)e−iĤ0t − eiĤ0tρ̂(t)e−iĤ0teiĤ0tĤinte

−iĤ0t

= [ĤI, ρ̂I(t)] . (9.91)

Here, as usual, ĤI = exp(iĤ0t)Ĥint exp(−iĤ0t) is the interaction Hamiltonian in the interaction
picture. Now, perturbation theory with respect to ĤI can be used to compute the time evolution
of ρ̂I; the first two terms read

ρ̂I(t) = ρ̂0 − i

∫ t

0

dt′ [ĤI(t
′), ρ̂0] + (−i)2

∫ t

0

dt′
∫ t′

0

dt′′ [ĤI(t
′), [ĤI(t

′′), ρ̂0]] + ... , (9.92)

where ρ̂0 ≡ ρ̂(0) = ρ̂I(0). Note that perturbation theory as an expansion in ĤI may break down
at a certain time t ≃ teq due to so-called secular terms. Physically, the reason is that after teq
right-handed neutrinos enter thermal equilibrium and their concentration needs to be computed
by other means. Here we assumed that t ≪ teq and thus perturbation theory should work.

We are interested in the distribution function of the right-handed neutrinos. It is associated with
the operator

dN̂

d3xd3q
≡

1

V

∑

s=±1

â†
q,sâq,s , (9.93)

where â†
q,s is the creation operator of a right-handed neutrino with momentum q and spin state s,

normalised as
{â

p,s, â
†
q,t} = δ(3)(p − q)δst , (9.94)

and V is the volume of the system. Then the distribution function dN/d3xd3q (number of right-
handed neutrinos per d3xd3q) is given by

dN(x,q)

d3xd3q
≡ Tr

[

dN̂

d3xd3q
ρ̂I(t)

]

. (9.95)

Inserting here Eq. (9.92), the first term leads to a time-independent result, and the second term
does not contribute since ĤI is linear in â†

q,s and â
q,s (cf. Eqs. (9.89), (9.97), (9.98)). Thus, we get

that to O(F 2) the rate of right-handed neutrino production reads

dN(x,q)

d4xd3q
= R(T,q) ≡ −

1

V
Tr

{

∑

s=±1

â†
q,sâq,s

∫ t

0

dt′ [ĤI(t), [ĤI(t
′), ρ̂0]]

}

. (9.96)

The interaction Hamiltonian ĤI appearing in Eq. (9.96) has the form in Eq. (9.89), except that
we now interpret the field operators as being in the interaction picture. Since N̂ evolves with the
free Hamiltonian ĤN in the interaction picture, it has the form of a free on-shell field operator,
and can hence be written as

N̂(x) =

∫

d3p
√

(2π)32p0

∑

s=±1

[

â
p,su(p, s)e−iP ·x + â†

p,sv(p, s)eiP ·x
]

, (9.97)

ˆ̄N(x) =

∫

d3p
√

(2π)32p0

∑

s=±1

[

â†
p,sū(p, s)eiP ·x + â

p,sv̄(p, s)e−iP ·x
]

, (9.98)
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where we assumed the normalization in Eq. (9.94), and p0 ≡ Ep ≡
√

p2 + M2, P ≡ (p0,p). The
spinors u, v satisfy the completeness relations

∑

s

u(p, s)ū(p, s) = /P + M ,
∑

s

v(p, s)v̄(p, s) = /P − M . (9.99)

Inserting the free field operators into (the interaction picture version of) Eq. (9.89), we can rewrite
ĤI as

ĤI =

∫

d3x

∫

d3p
√

(2π)32p0

∑

s=±1

[

â†
p,s Ĵp,s(x) eiP ·x + Ĵ†

p,s(x) âp,s e−iP ·x

]

, (9.100)

where, denoting

ĵα(x) ≡
ˆ̃
φ
†

(x)L̂α(x) , (9.101)

ˆ̄jβ(x) ≡ ˆ̄Lβ(x)
ˆ̃
φ(x) , (9.102)

the operators can be written as

Ĵp,s(x) ≡ −Fβ
ˆ̄jβ(x)aRv(p, s) + F ∗

α ū(p, s)aLĵα(x) , (9.103)

Ĵ†
p,s(x) ≡ −F ∗

α v̄(p, s)aLĵα(x) + Fβ
ˆ̄jβ(x)aRu(p, s) . (9.104)

It remains to take the following steps:

(i) We insert Eq. (9.100) into Eq. (9.96) and remove the right-handed neutrino creation and
annihilation operators, by making use of Eq. (9.94). We note first that

Tr
{

Â [B̂, [Ĉ, |0〉 〈0|]]
}

= Tr
{

Â
(

B̂Ĉ|0〉〈0| − B̂|0〉〈0|Ĉ − Ĉ|0〉〈0|B̂ + |0〉〈0|ĈB̂
)}

= 〈0|
{

ÂB̂Ĉ − ĈÂB̂ − B̂ÂĈ + ĈB̂Â
}

|0〉 , (9.105)

where we denoted

Â =
∑

s=±1

â†
q,sâq,s , (9.106)

B̂ =

∫

d3x

∫

d3p
√

(2π)32p0

∑

m=±1

[

â†
p,m Ĵp,m(x) eiP ·x + Ĵ†

p,m(x) âp,m e−iP ·x

]

, (9.107)

Ĉ =

∫

d3x′

∫

d3r
√

(2π)32r0

∑

n=±1

[

â†
r,n Ĵr,n(x′) eiR·x′

+ Ĵ†
r,n(x′) âr,n e−iR·x′

]

. (9.108)

A non-zero trace only arises from structures of the type 〈0|ââ†ââ†|0〉, i.e. the second and
third terms in Eq. (9.105). Thus, Eq. (9.96) becomes

R(T,q) =
1

V

∑

s,m,n=±1

∫ t

0

dt′
∫

d3x

∫

d3x′

∫

d3p
√

(2π)32p0

∫

d3r
√

(2π)32r0
Tr

{

ρ̂MSM

×
[

Ĵ†
r,n(x′)Ĵp,m(x)eiP ·x−iR·x′

〈0|âr,nâ†
q,sâq,sâ

†
p,m|0〉

+ Ĵ†
p,m(x)Ĵr,n(x′)e−iP ·x+iR·x′

〈0|âp,mâ†
q,sâq,sâ

†
r,n|0〉

]}

. (9.109)

Both expectation values evaluate to

〈0|âr,nâ†
q,sâq,sâ

†
p,m|0〉 = 〈0|âp,mâ†

q,sâq,sâ
†
r,n|0〉 = δmsδnsδ

(3)(r − q)δ(3)(p − q) . (9.110)
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Thereby

R(T,q) =
1

V

1

(2π)32Eq

∑

s=±1

∫ t

0

dt′
∫

d3x

∫

d3x′ ×

×
〈

Ĵ†
q,s(x

′)Ĵq,s(x)eiQ·(x−x′) + Ĵ†
q,s(x)Ĵq,s(x

′)eiQ·(x′−x)
〉

, (9.111)

where from now on the expectation value refers to that with respect to ρ̂MSM.

(ii) Inserting Eqs. (9.103), (9.104), we note that correlators of the type 〈ˆ̄jβ(x′)ˆ̄jα(x)〉 and

〈ĵβ(x′)ĵα(x)〉 must vanish, since lepton numbers are conserved within the MSM. The rate
thus becomes

R(T,q) =
1

V

1

(2π)32Eq

∑

s=±1

∫ t

0

dt′
∫

d3x

∫

d3x′ F ∗
αFβ ×

×
〈[

v̄(q, s)aLĵα(x′)ˆ̄jβ(x)aRv(q, s) + ˆ̄jβ(x′)aRu(q, s)ū(q, s)aLĵα(x)
]

eiQ·(x−x′)

+(x ↔ x′)
〉

. (9.112)

(iii) The spinors u, v appear in a form where the standard completeness relations mentioned in
Eq. (9.99) can be used. (In the first term, this requires writing

v̄(q, s)aL ĵα(x′)ˆ̄jβ(x)aRv(q, s) = Tr
[

v(q, s)v̄(q, s)aL ĵα(x′)ˆ̄jβ(x)aR

]

.) (9.113)

The mass terms M that are induced this way get projected out by aL, aR. Therefore,

R(T,q) =
1

V

1

(2π)32Eq

∑

s=±1

∫ t

0

dt′
∫

d3x

∫

d3x′ F ∗
αFβ ×

×
〈{

Tr
[

/Q aLĵα(x′)ˆ̄jβ(x)aR

]

+ ˆ̄jβ(x′)aR /Q aLĵα(x)
}

eiQ·(x−x′)

+(x ↔ x′)
〉

. (9.114)

If we for a moment generalize the notation such that α, β account for Lorentz indices as well
as flavour indices, we can in fact rewrite this as

R(T,q) =
1

V

1

(2π)32Eq

∑

s=±1

∫ t

0

dt′
∫

d3x

∫

d3x′ F ∗
αFβ ×

×
〈{

(aR /Q aL)βα

[

ĵα(x′)ˆ̄jβ(x) + ˆ̄jβ(x′)ĵα(x)
]}

eiQ·(x−x′) + (x ↔ x′)
〉

. (9.115)

(iv) Recalling the notation in Eqs. (8.43), (8.44),

Π>
αβ(Q) ≡

∫

dt d3x eiQ·(x−x′)
〈

ĵα(x)ˆ̄jβ(x′)
〉

, (9.116)

Π<
αβ(Q) ≡

∫

dt d3x eiQ·(x−x′)
〈

− ˆ̄jβ(x′)ĵα(x)
〉

, (9.117)

and noting that translational invariance implies
〈

ĵα(x)ˆ̄jβ(x′)
〉

= f(x − x′) = f(−x′ − (−x)) =
〈

ĵα(−x′)ˆ̄jβ(−x)
〉

, (9.118)

we can use Eq. (9.118) in the opposite direction and invert Eq. (9.116), to write

〈

ĵα(x′)ˆ̄jβ(x)
〉

=
〈

ĵα(−x)ˆ̄jβ(−x′)
〉

=

∫

d4P

(2π)4
eiP ·(x−x′)Π>

αβ(P )

P→−P
=

∫

d4P

(2π)4
e−iP ·(x−x′)Π>

αβ(−P ) . (9.119)
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Therefore, the two-point correlator in Eq. (9.115) can be written as

〈ĵα(x′)ˆ̄jβ(x) + ˆ̄jβ(x′)ĵα(x)〉 =

∫

d4P

(2π)4
e−iP ·(x−x′)

[

Π>
αβ(−P ) − Π<

αβ(P )
]

. (9.120)

(v) It remains to carry out the integrals over the space and time coordinates. Taking the limit
t → ∞ and summing both terms in Eq. (9.115) together, yields

lim
t→∞

∫

d3x

∫

d3x′

∫ t

0

dt′
[

ei(Q−P )·(x−x′) + ei(P−Q)·(x−x′)
]

= V (2π)3δ(3)(p − q) lim
t→∞

∫ t

0

dt′
[

ei(q0−p0)(t−t′) + ei(p0−q0)(t−t′)
]

= V (2π)3δ(3)(p − q) lim
t→∞

{
∫ 0

−t

dt′′
[

ei(p0−q0)t′′ + e−i(p0−q0)t′′
]

}

t′′≡t′−t

= V (2π)3δ(3)(p − q) lim
t→∞

{
∫ 0

−t

dt′′ ei(p0−q0)t′′ +

∫ t

0

dt′′′ ei(p0−q0)t′′′
}

t′′′≡−t′′

= V (2π)3δ(3)(p − q)

∫ ∞

−∞

dt̃ ei(p0−q0)t̃ = V (2π)4δ(4)(P − Q) , (9.121)

which allows to cancel 1/V from Eq. (9.115) and remove P -integration from Eq. (9.120).

As a result of all these steps, we obtain (q0 ≡ Eq)

R(T,q) =
1

(2π)32q0
F ∗

αFβTr
{

/Q aL

[

Π>
αβ(−Q) − Π<

αβ(Q)
]

aR

}

, (9.122)

where we have returned to the convention that α, β label generations, and have expressed the Dirac
part through a trace. Making use of the fact that 1 − nF(−q0) = nF(q0), Eq. (8.53) yields

Π>
αβ(−Q) = 2[1 − nF(−q0)]ραβ(−Q) = 2nF(q0)ραβ(−Q) , (9.123)

Π<
αβ(Q) = −2nF(q0)ραβ(Q) . (9.124)

Observing furthermore that lepton generation conservation within the MSM restricts the indices
α, β to be equal, we finally obtain the master relation

R(T,q) =
2nF(q0)

(2π)32q0

3
∑

α=1

|Fα|
2Tr

{

/Q aL

[

ραα(−Q) + ραα(Q)
]

aR

}

. (9.125)

We stress again that this relation is valid only provided that the number density of right-handed
neutrinos created is much smaller than their equilibrium concentration.

In summary, we have obtained a relation of the particle production rate, Eq. (9.96), to a finite-
temperature spectral function, computed already in Eq. (8.88).
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