9.4. Particle production rate

Let us consider a system where some particles interact strongly enough to remain in thermal
equilibrium, while others interact so weakly that they cannot follow thermal equilibrium. We can
imagine that particles of the latter type “escape” from the thermal system, either concretely (if
the system is of finite size) or in an abstract sense (being still within the same volume as the
thermal particles but not interacting with them). Familiar physical examples of such settings are
(i) the “decoupling” of weakly interacting dark matter particles in cosmology; (ii) the production of
electromagnetic “hard probes”, such as photons and p~ pt-pairs, from the QCD plasma generated
in heavy ion collision experiments; (iii) the neutrino “emissivity” of neutron stars, constituting the
most important process by which compact objects in astrophysics may cool down.

The purpose of this section is to develop the general formalism for addressing this phenomenon®.

To keep the discussion concrete, we choose a particular example, however: the production of right-
handed neutrinos within the model of Eq. (8.69),

1 - ~ 1 - . _ -~ ~ = ~
Lar =5 NipN = 5 MNN = FaLadarN - FiNGlapLa + Lusy (9.86)

where we have added the Lagrangian Lygy of the Minimal Standard Model (MSM), describing
the thermalized degrees of freedom. The goal for now is to derive a master equation relating the
production rate of N’s to a certain Green’s function, evaluated already in Sec. 8.2. In the next
section, we then combine all ingredients and show how the dark matter abundance can be evaluated
in practice.

Let p be the density matrix of the full theory, incorporating all degrees of freedom, and H the

corresponding full Hamiltonian operator. Then the equation for the density matrix is*®
A
0 1) (9.87)
We now split H in the form A A R R
H = Husm + Hx + Hing (9.88)

where ﬁMSM is the Hamiltonian of the MSM, ﬁN is the free Hamiltonian of right-handed neutrinos,
and Hjy, which is proportional to the neutrino Yukawa couplings, contains the interactions between
right-handed neutrinos and the particles of the MSM:

A oz N ~ 2T
Hiy = /dgx [FaLagbaRN + F;N(b arLql| - (989)

Here now N is a Majorana spinor field operator. To find the concentration of right-handed neu-
trinos, one has to solve Eq. (9.87) with some initial condition. We will assume that the initial
concentration of right-handed neutrinos is zero, that is

A(0) = pusm @ [0)(0] (9.90)

where pysy = Zl\jléM exp(—ﬁﬁMSM), B = 1/T, is the equilibrium MSM density matrix at a
temperature T, and |0) is the vacuum state for right-handed neutrinos.

Considering now flo = fIMSM —l—le as a “free” Hamiltonian, and ﬂint as an intelfaction term, one
can derive an equation for the density matrix in the interaction picture, pr = exp(iHot)p exp(—iHot),

44We follow the presentation in T. Asaka, M. Laine and M. Shaposhnikov, On the hadronic contribution to sterile
neutrino production, JHEP 06 (2006) 053 [hep-ph/0605209].
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in the standard way:

d 7oA iHot[ {7 4 —iH AT
i pi(t) = —Hopr+ ™ [H, p(t)]e™ " + prHo

= —Hopr + eiﬁot[ﬁo-i-ﬁinm ﬁ(t)]e_mot + piHy
= et Hy, p(t))e 0!

_ eiﬁotHinte*iﬁoteif{otﬁ(t)efiﬁot _ eiﬁotﬁ(t)ef’if{ote’if{otﬁintefigot
= [Hi, p(t)] - (9.91)

Here, as usual, H; = exp(iﬁot)flint exp(—iﬁot) is the interaction Hamiltonian in the interaction
picture. Now, perturbation theory with respect to H; can be used to compute the time evolution
of pr; the first two terms read

(0= o= [ o ()l + (07 [t [t R, @) ol e (092)

where gy = p(0) = p1(0). Note that perturbation theory as an expansion in Hy may break down
at a certain time ¢ ~~ toq due to so-called secular terms. Physically, the reason is that after tqq
right-handed neutrinos enter thermal equilibrium and their concentration needs to be computed
by other means. Here we assumed that ¢t < t.q and thus perturbation theory should work.

We are interested in the distribution function of the right-handed neutrinos. It is associated with
the operator

d3Xd3 V Z qs qsa (993)

s==+1

where aIl o Is the creation operator of a right-handed neutrino with momentum q and spin state s,

normalised as
{dp,sv dj;,t} = 6(3) (p - q)ast ’ (994)

and V is the volume of the system. Then the distribution function dN/d3x d3q (number of right-
handed neutrinos per d®x d3q) is given by

dN(z, q) N
———— =Tr | —=—p1(t 9.95
Pxdiq Tx g (9.95)
Inserting here Eq. (9.92), Athe first term leads to a time-independent result, and the second term
does not contribute since Hi is linear in a:& and G, , (cf. Egs. (9.89), (9.97), (9.98)). Thus, we get
that to O(F?) the rate of right-handed neutrino productlon reads

ddjjgng) R(T,a) = ——Tr{ ildLSAqs/ dt’ [ﬁl(t),[ﬁl(t’),ﬁo]]} . (9.96)

The interaction Hamiltonian H; appearing in Eq. (9.96) has the form in Eq. (9.89), except that
we now interpret the field operators as being in the interaction picture. Since N evolves with the
free Hamiltonian Hy in the interaction picture, it has the form of a free on-shell field operator,
and can hence be written as

N(x) /m zj;l[ e Pral w(p, s)eip'ﬂ , (9.97)
ﬁ(x) = /\/WL?’QPO 2 [d;sﬂ(p s)etfe 4 ag, (P, s)eiiP'z} , (9.98)
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where we assumed the normalization in Eq. (9.94), and p = E, = /p? + M2, P = . The
spinors u, v satisfy the completeness relations

Zu(p, s)u(p,s) =P + M ,Zv(p,s)@(p, s)=pP —M. (9.99)

S

Inserting the free field operators into (the interaction picture version of) Eq. (9.89), we can rewrite
HI as

B dp )
HI:/d?’x/ [ e’ T+ JL (@) apse T (9.100)
V (27T)32p SZ:I:I

where, denoting

Ja(z) = é(:v)ﬁg(w% (9.101)
jp(x) = Lg(2)d() (9.102)
the operators can be written as
fos(2) = —Fyjs(@)arv(p,s)+ Fa(p, s)arja(z) , (9.103)
L@ = —Fio(ps)asja(@) + Fy js(@)anu(p,s) (9.104)

It remains to take the following steps:

(i) We insert Eq. (9.100) into Eq. (9.96) and remove the right-handed neutrino creation and
annihilation operators, by making use of Eq. (9.94). We note first that

T {A [B,[C,10) of]} = e {A(BEI0)0] — Blo)(0]C — Cl0)01B + 0)(0|CB) |
- <0|{ABO C*AB-BAC*+OBA}|0>, (9.105)
where we denoted
A = Yl ag,, (9.106)
s==+1
B = / d*x / \/%mzl[a;mjp,m(mei”+Jg,m(:c)ap7me—ip'w], (9.107)

¢

/ dgxl/ \/(205))2% ,,21{ Tl )dr’"em.zl - O

A non-zero trace only arises from structures of the type (Olaafaa’|0), i.e. the second and
third terms in Eq. (9.105). Thus, Eq. (9.96) becomes

/dt /d3 /d3 //\/27r Y3250 /\/27r 5270 e { s

R(T,q)

s,m,n==+1

X |:J1T,n(x/)jp,m(x)eipvm_iR'w <O|dl‘,na’;r:1 saq,s p,m|0>
b T e e P O il g 10] (9.109)

Both expectation values evaluate to

= <0|dp,majq s3q,s0r, n|0> = 5ms(5ns(5 ( q)5(3) (p—q). (9.110)

<O|dr7"dj:1,sdq,sd1-p,m |O>
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Thereby

R(T,q) = e 32E Z/dt /d3 /d3x’><

<JT (2') Jas(@)e @) 4 ] (2)Jq,e(@)e @Dy (9.0

q,s

X

where from now on the expectation value refers to that with respect to pysm-

(i) II}SertiI}g Egs. (9.103), (9.104), we note that correlators of the type Gﬁ(x’)ja(x)) and
(78(2")ja(z)) must vanish, since lepton numbers are conserved within the MSM. The rate
thus becomes

R(T,q) = VW il/dt /d3 /d?’x’F Fy x
< ([ola.)asja(@)is(@)arv(a,s) + jala)aru(d, s)u(a, s)aja (@) =)
(o )> . (9.112)

(iii) The spinors u,v appear in a form where the standard completeness relations mentioned in
Eq. (9.99) can be used. (In the first term, this requires writing

o(a, s)arja(@')j 5(x)arv(a, s) = Tr [v(q, $)5(d, $)aLja (x/)jﬁ(:ﬂ)aR} ) (9.113)
The mass terms M that are induced this way get projected out by ar,ar. Therefore,

1 3 3
R(T,q) = 27T)32E Z/dt /d /dx’F Fy x

V s==+1
< Tr @aL]a ( )CLR} "’jﬁ(xl)aR@aLja(x)}eiQ'(z*zl)

Y )> . (9.114)

_|_

If we for a moment generalize the notation such that «, 8 account for Lorentz indices as well
as flavour indices, we can in fact rewrite this as

1 1 ¢
R(T = —— dt’ [ a3 /d3 '"F*F
T2 V (2m)32Eq 521/0 / * * Falp X

< ({@r@ar)saja@)is@) +js@)ia@)] }@ T 4 @ —a)) L (9115)

(iv) Recalling the notation in Eqgs. (8.43), (8.44),

7,Q) = / dt dx e (G, () 5(2")) (9.116)
M5,(Q) = / dtdx e @<y (@)jal@)) | (9.117)
and noting that translational invariance implies
(Ja@)igla)) = f(@ =) = f(=a = (=) = (Ja(=2")js(-2)) . (9.118)
we can use Eq. (9.118) in the opposite direction and invert Eq. (9.116), to write
5 = 5 A d*P ,
: AW 5 NG (! — iP-(z—a’) 7>
(in(@is(@)) = (Ga(-2)is(~a")) e mz ()
P—-—P d4P —iP-(z—x') 7>
= - ,(—=P). (9.119
/(27‘1’)46 aﬁ( ) ( )
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Therefore, the two-point correlator in Eq. (9.115) can be written as

(e )7al) + Ta@iale)) = [ sz T M2 -P) ~M5P)] . 0120

(v) It remains to carry out the integrals over the space and time coordinates. Taking the limit
t — oo and summing both terms in Eq. (9.115) together, yields

t
im [ & /d3x'/dt' {ei(Q—P)-(z—w')_’_ei(P—Q)-(ac—w')}
0

t—oo

t
= V)39 p-q) Jim [ at’ [euqtp“)(tft') I ei@o,qo)(t,t/)}
> Jo

0
- V@W“WP-®£@{/dﬂ%wtﬁﬂ+gwtﬂﬁu
St v =t'—t

0 t
— V@ (p — q) lim {/ 4" i +/ e ei(poqo)t,,,}
t—o0 —t 0 =
= v(en)’s?(p-q) / di /"= = v (2m) @ (P - Q) | (9.121)

— 0o

which allows to cancel 1/V from Eq. (9.115) and remove P-integration from Eq. (9.120).

As a result of all these steps, we obtain (¢ = Eq)

R(T,q) = mFéFﬁﬂ {@0r[17,(-Q) - 155(@)] an} , (9.122)

where we have returned to the convention that «, 8 label generations, and have expressed the Dirac
part through a trace. Making use of the fact that 1 — ng(—q°) = nr(¢"), Eq. (8.53) yields

I75(-Q) = 2[1—nr(=¢")]pas(—Q) = 2nr(¢")pas(—Q) . (9.123)
N5Q) = —2n8(¢")pas(Q) . (9.124)

Observing furthermore that lepton generation conservation within the MSM restricts the indices
a, B to be equal, we finally obtain the master relation

n 0 3
R(T,q) = é;;—ggq{) Zjl |F [ Tr {@aL [pw(—cz) n pw(Q)] aR} . (9.125)

We stress again that this relation is valid only provided that the number density of right-handed
neutrinos created is much smaller than their equilibrium concentration.

In summary, we have obtained a relation of the particle production rate, Eq. (9.96), to a finite-
temperature spectral function, computed already in Eq. (8.88).
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