
9. Applications

9.1. Thermal phase transitions

As a first application of the general formalism developed, we consider the existence of finite-
temperature phase transitions in models of particle physics. Prime examples are the “deconfine-
ment” transition taking place in QCD, and the “electroweak symmetry restoring” transition taking
place in the electroweak theory32, both of which could have significance for Early Universe cosmol-
ogy. For simplicity, though, the practical analysis will be carried out within the scalar field theory
discussed in Sec. 3.

In general, a phase transition can be defined to be a line in the (T, µ)-plane across which the
grand canonical free energy density f(T, µ) is non-analytic. In particular, if ∂f/∂T or ∂f/∂µ is
discontinuous, we speak of a first order transition. The energy density
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is then discontinuous. This means that a closed system can proceed through the transition only
if there is some mechanism for energy transfer and dissipation; thus, first order transitions always
possess non-trivial dynamics.

It is often possible to associate an order parameter with a phase transition. In a strict sense,
the order parameter should be an elementary or composite field, the expectation value of which
vanishes in one phase and is non-zero in another. In a generalized sense, we may refer to an order
parameter even if it would not vanish in either phase, provided that (in first order transitions) it
jumps across the phase boundary. A particularly simple situation is if this role is taken by some
elementary field; in the following we consider the case where a real scalar field, φ, plays the role of
an order parameter. More realistically, φ could be for instance a neutral component of the Higgs
doublet (in some gauge) in, say, the MSSM.

The Euclidean Lagrangian of the system then reads

LE =
1

2
(∂τφ)2 +

1

2
(∇φ)2 + V (φ) . (9.2)

We take the potential to be of the form V (φ) = − 1
2 m2φ2 + 1

4 λφ4, like in the Standard Model, so
that φ has a non-zero expectation value at zero temperature:

φ

0

V

Let us now evaluate the partition function of this system with the method of the effective poten-
tial, Veff(φ̄), introduced in Sec. 7.2. In other words, we again put the system in a finite volume V ,
and denote by φ̄ the condensate, i.e. the mode with p = 0, ωb = 0. We then write

Z(V, T, µ) =

∫ ∞

−∞

dφ̄

∫

P̃ 6= 0

Dφ′ e−SE[φ=φ̄+φ′] (9.3)

32We use here the standard characterizations of these transitions, even though in a strict sense neither concept is
appropriate.
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≡
∫ ∞
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dφ̄ exp
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, (9.4)

where periodic boundary conditions are assumed. We note that the thermodynamic limit V → ∞
is to be taken only after the evaluation of Veff(φ̄), and that

∫

dτ
∫

d3x φ′ = 0, given that φ′ by

definition only has modes with P̃ 6= 0.

In order to carry out the integral in Eq. (9.4), we expand Veff(φ̄) around its absolute minimum
φ̄min, and perform the corresponding Gaussian integral:
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whereby (we remove reference to µ since there is no chemical potential in this system)

f(T ) = Veff(φ̄min; T ) + O
(

lnV

V

)

. (9.7)

In other words, in the thermodynamic limit V → ∞, the problem reduces to determining Veff and
finding its minimum. Note that the value of φ̄min depends on the parameters of the problem, in
particular on T .

Let us now ask under which conditions a first order phase transition could emerge. We can write
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where we made use of the fact that φ̄min minimizes Veff. Thereby it is clear that limT→T+
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Our task therefore is to evaluate Veff. Before proceeding with the practical computation, let us
formulate the generic rules for the computation of the effective potential that can be extracted
from the above:

(1) Write φ = φ̄ + φ′ in LE .

(2) The part only depending on φ̄ is the 0th order, or tree-level, contribution to Veff.
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(3) Any terms linear in φ′ should be dropped, because
∫

dτ
∫

d3x φ′ = 0.

(4) The remaining contributions to Veff are obtained like f(T ) before, except that the masses
and couplings of φ′ now depend on the “shift” φ̄.

(5) However, among all possible graphs, one-particle-reducible graphs (i.e. graphs with a single
φ′-propagator, the cutting of which would split the graph into two graphs) should be dropped
(in addition to disconnected graphs), since such a φ′-propagator would necessarily carry zero
momentum, which is excluded by definition.

Remarkably, this set of rules is identical, from an operational point of view, to the set of rules
that can be shown to follow33 from a totally different (but “standard”) definition of an effective
potential, namely one based on a Legendre transform of the generating functional:

e−W [J] ≡
∫

Dφ e−SE−
R

x
φJ , (9.10)

Γ[φ̄] ≡ W [J ] − Jφ̄ , φ̄ ≡ δW [J ]

δJ
, (9.11)

Veff(φ̄) ≡ T

V
Γ[φ̄] for φ̄ = constant . (9.12)

However, our procedure is actually better than this standard one, because our procedure is defined
for any value of φ̄, while the Legendre transform of the standard procedure requires certain prop-
erties from the functions in order to be defined, which leads to confusing discussions concerning
for instance whether the effective potential necessarily needs to be a convex function.

Let us now proceed with the practical computation. Implementing steps (1) and (2), and indi-
cating terms dropped in step (3) by square brackets, we get
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∫ β

0

dτ

∫

V

d3x =
V

T
, (9.16)
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4
λφ̄4 . (9.17)

Note that, consequently, V
(0)
eff (φ̄) is independent of the temperature T .

The dominant “thermal fluctuations” or “radiative corrections” are given by the 1-loop expres-
sion. This follows from the part quadratic in φ′ (since linear terms are dropped). Combining
Eqs. (9.14), (9.15), the “effective” mass of φ′ reads m2

eff ≡ −m2 + 3λφ̄2, and the corresponding
contribution to the effective potential becomes
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33R. Jackiw, Functional Evaluation of the Effective Potential, Phys. Rev. D 9 (1974) 1686.

127



In the infinite-volume limit this goes over to the function J(meff, T ), defined in Eqs. (2.50), (2.51).
We return presently to the properties of this function, but let us first specify the way to compute
higher-order corrections as well.

Indeed, higher order corrections come from the remaining terms, paying attention to the rules
(4) and (5):
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where the propagator to be used reads

〈
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〉

=
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We now return to the evaluation of the 1-loop effective potential at V = ∞. We obtain
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The temperature-dependent part is as in Eq. (2.58),
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This function was evaluated in Exercise 3, and we recall that the shape is:

1-loop correction Tree-level result

y=(c
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φ
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(0)

In other words, the symmetric minimum becomes more favoured (has a lower free energy) at high
temperatures!

In order to be more quantitative, let us study what happens at very high T . From Eq. (2.81),

JT (m) = −π2T 4
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+
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24
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12π
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[
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]

+ O(m6) . (9.28)

Keeping just the leading mass-dependent term leads to

V
(0)
eff + V

(1)
eff = [φ̄-indep.] +

1

2

(

−m2 +
λ

4
T 2

)

φ̄2 +
1

4
λφ̄4 . (9.29)

128



φ
_

0

V
eff

large T

small T

Therefore, for T ≪ 2m/
√

λ, the symmetry is broken; for T ≫ 2m/
√

λ, it is restored; and in
between there is a phase transition of some kind, as illustrated above.

We may then ask a more refined question, namely, what is the order of the transition? In order
to get a first impression on this, let us include the next term from Eq. (9.28). For simplicity, we
may even put m2 → 0, whereby

V
(0)
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eff = [φ̄-indep.] +

λ
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T 2φ̄2 − T
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(3λ)3/2 |φ̄|3 +

1

4
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Thus, it appears like this could be a case of a “fluctuation induced” / “radiatively generated” first
order transition:
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3

_

We should not rush to conclusions, however. Indeed, it can be seen from Eq. (9.30) that the
broken minimum appears where the cubic and quartic terms are of similar orders of magnitude,
i.e.,

Tλ
3
2 |φ̄|3 ∼ λ|φ̄|4 ⇒ |φ̄| ∼ λ

1
2 T . (9.31)

However, the expansion parameter related to higher order corrections, discussed schematically in
Sec. 6.1, then becomes

λT

meff
∼ λT
√

3λφ̄2
∼ λ

1
2 T

|φ̄| ∼ O(1) . (9.32)

In other words, the perturbative prediction is not reliable for the order of the transition.
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On the other hand, a reliable analysis can again be carried out with effective field theory tech-
niques, as discussed in Sec. 6.3 for QCD. In the case of the scalar field theory, the dimensionally
reduced action takes the form

Seff =
1

T

∫

V

d3x

[

1

2
(∂iφ3)

2
+

1

2
m2

3φ
2
3 +

1

4
λ3φ

4
3 + ...

]

, (9.33)

with effective couplings of the form

m2
3 = −m2[1 + O(λ)] +

1

4
λT 2[1 + O(λ)] , (9.34)

λ3 = λ[1 + O(λ)] . (9.35)

This system can be studied non-perturbatively (with lattice simulations, ǫ-expansion, etc) to show
that there is a second order transition at m2

3 ≈ −m2 + λT 2/4 ≈ 0, in the 3d Ising universality
class.

Finally, we note that if the original theory is more complicated (containing for instance two
different fields and coupling constants), then it is possible to arrange the couplings so that the first
order signature seen in perturbation theory is physical. For instance:

• A theory with two real scalar fields can have a first order transition, if the couplings between
the two fields are tuned appropriately34.

• A theory with a complex scalar field and U(1) gauge symmetry, which is just the Ginzburg-
Landau theory of superconductivity, does have a first order transition, if the quartic coupling,
λ, is small enough compared with the electric coupling squared, e2.35

• The standard electroweak theory, with Higgs doublet(s) + SU(2)×U(1) gauge symmetry, can
also have a first order transition if the scalar self-coupling λ is small enough36.

34J. Rudnick, First-order transition induced by cubic anisotropy, Phys. Rev. B 18 (1978) 1406.
35B.I. Halperin, T.C. Lubensky and S.-K. Ma, First-Order Phase Transitions in Superconductors and Smectic-A

Liquid Crystals, Phys. Rev. Lett. 32 (1974) 292.
36D.A. Kirzhnits and A.D. Linde, Symmetry Behavior in Gauge Theories, Annals Phys. 101 (1976) 195.

130


