
8.5. Relation to classical kinetic theory

We found in the previous section that the HTL effective theory has the unpleasant feature of
being non-local. It turns out, however, that by introducing extra degrees of freedom — hard on-
shell particles — it can be recast in a local form, as a “kinetic theory”, involving the mentioned
particles propagating in a gauge field background. (The “canonical” kinetic theory is defined by
the Boltzmann equation; when gauge fields appear as force terms in the Boltzmann equation, and
gauge field equations of motion are imposed as a further constraint, the system is often referred to
as Vlasov equations.) Such a local reformulation is very useful from the point of view of further
analyses, both analytic25 and numerical27, and is also conceptually more satisfying than a non-local
effective theory. As already mentioned in the previous section, the drawback is that the theory
no longer has the appearance of a quantum field theory, whereby some of the familiar tools and
results are no longer available.

In order to simplify the analysis a bit, we will start by considering the case of QED, i.e. an
Abelian plasma. Then the covariant derivatives in Eq. (8.147) become partial derivatives, and the
HTL-correction is quadratic. On the other hand, as we recall from Eq. (7.39), in the Abelian case
the effective theory can also possess a term linear in the gauge field A0, if the fermions carry a
non-zero chemical potential.

More precisely, let us assume that the coupling between fermions and gauge fields is mediated
by the covariant derivative

Dµ = ∂µ − igAµ . (8.148)

Letting

jE ≡ g
µ

3

(

T 2 +
µ2

π2

)

, m2
E ≡ g2

(
T 2

3
+

µ2

π2

)

, (8.149)

and introducing the shorthand notation
∫

v

≡

∫
dΩv

4π
(8.150)

for the velocity integrals, the HTL effective action of Eq. (8.147) can be written as

SM =

∫

x,v

[

−
1

4
FµνFµν − jEvµAµ −

m2
E

4
Fαµ

vαvβ

(v · ∂)2
Fβ

µ

]

. (8.151)

Here we have carried out one “partial integration” in the denominator (this can perhaps easiest be
understood by going to momentum space).

Since the action is quadratic in the fields, its contents can equivalently be expressed through
equations of motion. It is useful to express the equations of motion in a form following from the
identities in Eq. (8.210). We obtain

∂µFµν(x) =

∫

v

[

jEvν − m2
E

vνvα

v · ∂
Fα0(x)

]

. (8.152)

By making use of the properties
∫

v
vα = δα

0 and F00 = 0 it is easy to see that the right-hand side
is divergenceless (or “transverse”) with respect to ∂ν , as it has to be in order for the equation to
be consistent.

Let us at this point introduce some notation that will be useful in the following. We denote

δ+(P 2) ≡ 2θ(p0) (2π) δ(P 2) , (8.153)

27D. Bödeker, G.D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard thermal loops on

the lattice, Phys. Rev. D 61 (2000) 056003; M. Hindmarsh and A. Rajantie, Phase transition dynamics in the hot

Abelian Higgs model, Phys. Rev. D 64 (2001) 065016; A. Rebhan, P. Romatschke and M. Strickland, Dynamics of

quark-gluon plasma instabilities in discretized hard-loop approximation, JHEP 09 (2005) 041.
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such that ∫

P

δ+(P 2) f(p0,p) =

∫

p

f(p,p)

p
, p ≡ |p| . (8.154)

All the results will factorise in a form where a phase space integral is left over, which can be carried
out explicitly. Let

nF(p) =
1

eβp + 1
, N±(p) = nF(p + µ) ± nF(p − µ) . (8.155)

Then, irrespective of the relative magnitudes of T, µ,

∫

p

N−(p) = −
µ

6

(

T 2 +
µ2

π2

)

, (8.156)

∫

p

N+(p)

p
= −

1

2

∫

p

∂N+(p)

∂p
= −

1

2

∂

∂µ

∫

p

N−(p) =
1

4

(T 2

3
+

µ2

π2

)

, (8.157)

∫

p

N−(p)

p2
= −

∫

p

1

p

∂N−(p)

∂p
=

1

2

∫

p

∂2N−(p)

∂p2
=

1

2

∂2

∂µ2

∫

p

N−(p) = −
µ

2π2
. (8.158)

These relations can be proven with the techniques of Exercise 12.

The claim now is that the HTL structures in Eq. (8.152) can be reproduced28 by classical kinetic
theory, or “Vlasov equations”. To see this, let us start with classical electrodynamics29, and define

Pα =
dxα

dt
,

dPα

dt
= −gFα

βP β . (8.159)

Then the collisionless Boltzmann equation for hard particles in a gauge field background becomes

df(x, P )

dt
= Pα

(
∂f

∂xα
+ gFα

β ∂f

∂P β

)

= 0 . (8.160)

Let us note that we may in general assume that

f(x, P ) = δ+(P 2)f̂(x, P ) , (8.161)

where δ+(P 2) is defined as in Eq. (8.153), since this form is conserved by Eq. (8.160), due to

PαFα
β ∂

∂P β
δ(P 2) = 2PαP βFαβδ′(P 2) = 0 . (8.162)

The derivate of θ(p0) included in δ+(P 2) can be safely ignored as well, since it would contribute
only at the point p0 = p = 0, and has no effect after integration over p.

We formally solve Eq. (8.160) in powers of gFµν : f = f0 + f1 + f2 + ... . This leads to the
recursion relation

P · ∂fn+1(x, P ) = −gPαFαβ(x)
∂fn(x, P )

∂Pβ

. (8.163)

The zeroth order gives
P · ∂f0(x, P ) = 0 . (8.164)

We take as a solution a space-time independent function depending, in view of Eq. (8.161), non-
trivially only on p0, parametrized by T, µ, and applying separately to all particle species i:

f
(i)
0 = δ+(P 2) f̂

(i)
0 (p0; T, µi) ≡ δ+(P 2)nF(p0 + µi) , (8.165)

28J.P. Blaizot and E. Iancu, Kinetic equations for long wavelength excitations of the quark – gluon plasma, Phys.
Rev. Lett. 70 (1993) 3376; P.F. Kelly, Q. Liu, C. Lucchesi and C. Manuel, Deriving the hard thermal loops of QCD

from classical transport theory, Phys. Rev. Lett. 72 (1994) 3461; F.T. Brandt, J. Frenkel and J.C. Taylor, High

temperature QCD and the classical Boltzmann equation in curved space-time, Nucl. Phys. B 437 (1995) 433.
29For a pedagogic presentation, see R.D. Pisarski, Nonabelian Debye screening, tsunami waves, and worldline

fermions, lectures at International School of Astrophysics D. Chalonge, Erice, Italy, 1997 [hep-ph/9710370].
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where nF(p0) is from Eq. (8.155). Furthermore, antiparticles are always assumed to come with the
opposite signs of g and µ than particles. Thus, a single Dirac fermion contributes two degrees of
freedom with +g, +µ, two with −g,−µ.

In addition to these equations, we need the definition of the current induced by the hard particles:

jµ(x) ≡ −
∑

i

gi

∫

P

Pµf (i)(x, P ) . (8.166)

The equations of motion are

Sfree
M = −

∫

x

1

4
FµνFµν ,

δ

δAµ

Sfree
M = ∂νF νµ = jµ . (8.167)

The expression for jµ in terms of the background gauge field thus implies a non-local effective
action SM = Sfree

M + δSM for the gauge fields only, where δSM is to be determined from

δ

δAµ

δSM = −jµ . (8.168)

Let us now work out explicit expressions. We start by considering f = f0. Summing over two
degrees of freedom with +g, +µ and two with −g,−µ, we obtain from Eqs. (8.165), (8.166),

jµ = −2g

∫

P

δ+(P 2)PµN−(p0) = δµ0 g
µ

3

(

T 2 +
µ2

π2

)

, (8.169)

where we used Eqs. (8.154), (8.155), (8.156). This indeed agrees with Eq. (8.152).

For the next term we need

f1 = −g
1

P · ∂
PαFαβ

∂f0

∂Pβ

. (8.170)

Inserting into Eq. (8.166),

jµ(x) =
∑

i

g2
i

∫

P

∂f
(i)
0

∂Pβ

PµPα

P · ∂
Fαβ(x) . (8.171)

Since f0 essentially only depends on p0, we get

jµ(x) = 2g2

∫

P

δ+(P 2)
[

n′

F(p0 + µ) + n′

F(p0 − µ)
]

p

︸ ︷︷ ︸

−
1
2

(

T2

3
+ µ2

π2

)

∫

v

vµvα

v · ∂
Fα0(x) , (8.172)

which indeed agrees with the second term in Eq. (8.152). This completes our proof for the Abelian
case.

Let us then move to the non-Abelian case. The formulation will be somewhat more complicated,
so we just indicate the form of the kinetic equations, and solve them in the static limit.

The simplest way to display the non-Abelian kinetic equations is to follow Eq. (8.160), but
replace f by an Nc×Nc matrix. The collisionless QCD Boltzmann/Vlasov equation for each single
fundamentally charged fermionic degree of freedom, and the corresponding gauge current induced,
can be written as

[

P · D, f
]

+
g

2

{

PµFµν ,
∂f

∂Pν

}

= 0 , (8.173)

ja
µ = −g

∫

P

PµTr
[

T af
]

. (8.174)
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To express this in a more down-to-earth way, we may write the matrix f in terms of a “singlet”
distribution function f̄ and an adjoint (or “octet”) distribution function fa:

f(x, P ) =
1

Nc
f̄(x, P ) + 2T afa(x, P ) . (8.175)

Making use of

{T a, T b} =
1

Nc
δab + dabcT c , (8.176)

we can write
[

P · D, f
]

=
1

Nc
P · ∂f̄ + 2(P · D)abf bT a , (8.177)

{

PµFµν ,
∂f

∂Pν

}

=
1

Nc

{

PµFµν ,
∂f̄

∂Pν

}

+ 2PµF a
µν

∂f b

∂Pν

{T a, T b}

=
2

Nc
PµFµν

∂f̄

∂Pν

+
2

Nc
PµF a

µν

∂fa

∂Pν

+ 2dabcT cPµF a
µν

∂f b

∂Pν

. (8.178)

Projecting then Eq. (8.173) with Tr [...] and Tr [T a...], the equations obtain the forms30

P · ∂f̄ + gPµF a
µν

∂fa

∂Pν

= 0 , (8.179)

(P · D)abf b +
g

2
dabcPµF b

µν

∂f c

∂Pν

+
g

2Nc
PµF a

µν

∂f̄

∂Pν

= 0 , (8.180)

ja
µ = −

∑

i

gi

∫

P

Pµfa(i) . (8.181)

When computing the current, each quark now comes with Nc colours, in addition to two spin
degrees of freedom, both for particles and for anti-particles.

The equations can again be solved iteratively in gFµν : f = f0 + f1 + f2 + ... . At the zeroth
order,

f̄
(i)
0 = δ+(P 2)nF(p0 + µi), (8.182)

f
a(i)
0 = 0. (8.183)

Iterating this, we obtain at the first order,

f̄
(i)
1 = 0 , (8.184)

(P · D)abf
b(i)
1 = −

gi

2Nc
PµF a

µ0 δ+(P 2)n′

F(p0 + µi) . (8.185)

Let us now solve these equations in the static limit. In Eq. (8.185) we can then write

PµF a
µ0 = (P · DA0)

a − ∂0(P
µAa

µ) = (P · D)abAb
0 , (8.186)

so that
f

a(i)
1 = −

gi

2Nc
Aa

0 δ+(P 2)n′

F(p0 + µi) . (8.187)

Inserting into Eq. (8.181), we obtain

ja
µ = −

∑

i

gi

∫

P

Pµf
a(i)
1 = g2Aa

0

∫

P

Pµ δ+(P 2)N ′

+(p0)

= δµ0 g2Aa
0

∫

p

N ′

+(p) . (8.188)

30U. Heinz, Kinetic Theory For Nonabelian Plasmas, Phys. Rev. Lett. 51 (1983) 351; H. Elze and U. Heinz,
Quark - Gluon Transport Theory, Phys. Rept. 183 (1989) 81.
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After use of Eq. (8.157), and a proper account of the signs between LE and LM as well as be-
tween Euclidean and Minkowskian A0, this indeed agrees with the derivative of the mass term in
Eq. (6.36).

Let us count the amount of information that needed to be added to the HTL action, in order
to make it local. In full generality, the classical distribution functions f(x, P ) depend on (4+4)

coordinates. As we have discussed, f(x, P ) = δ+(P 2)f̂(x, P ), i.e. the hard particles can be set
on-shell; thus the dependence can thus be reduced to, say, the spatial components p. However,
one further simplification is possible in Eq. (8.185), by writing

f
a(i)
1 = −

gi

2Nc
δ+(P 2)n′

F(p0 + µi)W a(x,v) , (8.189)

so that
(v · D)abW b(x,v) = vµF a

µ0(x) . (8.190)

We can also perform the sum over i and the integral over p0 in Eq. (8.181), reducing thus the
dependence only to angular variables and a total of (4+2) dimensions. Nevertheless, we needed to
introduce extra dimensions, not only extra degrees of freedom, in order to make the HTL theory
local!

As a final remark we note that the equations written down so far did not specify what kind
of initial conditions should be assumed for the gauge fields. Indeed, in order to have a proper
statistical weighting over the initial conditions for the time evolution, one should also work out a
Hamiltonian formulation in terms of the gauge fields Aa

i , Ea
i ≡ F a

0i and W a; afterwards one can
weigh by exp(−H/T ). This issue is not altogether trivial but does turn out to possess a solution31.

31J.P. Blaizot and E. Iancu, Soft collective excitations in hot gauge theories, Nucl. Phys. B 417 (1994) 608;
V.P. Nair, Hard thermal loops, gauged WZNW action and the energy of hot quark - gluon plasma, Phys. Rev. D 48
(1993) 3432 Hamiltonian analysis of the effective action for hard thermal loops in QCD, Phys. Rev. D 50 (1994)
4201.
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8.6. Exercise 12

Compute the radial and angular integrals in Eqs. (8.115)–(8.118).

Solution to Exercise 12

Eq. (8.115) can be verified by straightforward partial integration:

∫ ∞

0

ds
ds

ds
s
[

nF(s − µ) + nF(s + µ)
]

= −

∫ ∞

0

ds s
[

nF(s − µ) + nF(s + µ)
]

−

∫ ∞

0

ds s2
[

n′

F(s − µ) + n′

F(s + µ)
]

. (8.191)

Moving the first term on the right-hand side to the left-hand side leads directly to Eq. (8.115).

Eq. (8.116) can be verified for instance by starting from a combination of Eqs. (7.35), (7.41):

−f(T, µ) = 2

∫

s

{

s + T

[

ln

(

1 + e−
s+µ

T

)

+ ln

(

1 + e−
s−µ

T

)]}

=
7π2T 4

180
+

µ2T 2

6
+

µ4

12π2
. (8.192)

Taking the second partial derivative with respect to µ, we get

−
∂2f(T, µ)

∂µ2
= 2

∫

s

{

T
∂2

∂µ2

[

ln

(

1 + e−
s+µ

T

)

+ ln

(

1 + e−
s−µ

T

)]}

= 2

∫

s

{

T
d2

ds2

[

ln

(

1 + e−
s+µ

T

)

+ ln

(

1 + e−
s−µ

T

)]}

= 4T

∫

s

1

s2

[

ln

(

1 + e−
s+µ

T

)

+ ln

(

1 + e−
s−µ

T

)]

(8.193)

=
T 2

3
+

µ2

π2
, (8.194)

where in the penultimate step we carried out two partial integrations.

On the other hand, the integral in Eq. (8.193) can be rewritten as

∫

s

1

s2

[

ln

(

1 + e−
s+µ

T

)

+ ln

(

1 + e−
s−µ

T

)]

=
4π

(2π)3

∫ ∞

0

ds
ds

ds

[

ln

(

1 + e−
s+µ

T

)

+ ln

(

1 + e−
s−µ

T

)]

= −
4π

(2π)3

∫ ∞

0

ds s

[
e−

s+µ

T

1 + e−
s+µ

T

+
e−

s−µ

T

1 + e−
s−µ

T

](

−
1

T

)

=
1

T

∫

s

1

s

[

nF(s − µ) + nF(s + µ)
]

. (8.195)

Replacing the integral in Eq. (8.193) by that in Eq. (8.195) leads then to Eq. (8.116).

Eq. (8.117) is a trivial consequence of rotational symmetry, and the fact that v2 = 1.

As far as Eq. (8.118) goes, we start by carrying out a simpler integral:

L ≡

∫
dΩv

4π

1

iq̃0 − q · v
=

1

4π
2π

∫ +1

−1

dz
1

iq̃0 − |q|z
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= −
1

2|q|

∫ +1

−1

dz
d

dz
ln(iq̃0 − |q|z)

=
1

2|q|
ln

iq̃0 + |q|

iq̃0 − |q|
. (8.196)

Further integrals can then be obtained by making use of rotational symmetry: for instance,
∫

dΩv

4π

vi

iq̃0 − q · v
= qi f(iq̃0, |q|) , (8.197)

where, contracting both sides with q,

f(iq̃0, |q|) =
1

q2

∫
dΩv

4π

q · v

iq̃0 − q · v
=

1

q2

[

−1 + iq̃0

∫
dΩv

4π

1

iq̃0 − q · v

]

. (8.198)

Another trick, needed for having higher powers in the denominator, is to take derivatives of
Eq. (8.196) with respect to iq̃0.

Without carrying out any further steps, we list finally the results for a number of velocity integrals
that can be obtained this way. Let us change the notation a bit at this point: we now replace
iq̃0 by q0 + i0+, as is relevant for retarded Green’s functions (i0+ is not shown explicitly), and
introduce the light-like four-velocity v ≡ (1,v). Then the integrals read (i, j = 1, 2, 3)

∫
dΩv

4π
= 1 , (8.199)

∫
dΩv

4π
vi = 0 , (8.200)

∫
dΩv

4π
vivj =

1

3
δij , (8.201)

∫
dΩv

4π

1

v · Q
= L(Q) , (8.202)

∫
dΩv

4π

vi

v · Q
=

qi

|q|2

[

−1 + q0L(Q)
]

, (8.203)

∫
dΩv

4π

vivj

v · Q
=

L(Q)

2

(

δij −
qiqj

|q|2

)

+
q0

2|q|2

[

1 − q0L(Q)
](

δij − 3
qiqj

|q|2

)

, (8.204)

∫
dΩv

4π

1

(v · Q)2
=

1

Q2
, (8.205)

∫
dΩv

4π

vi

(v · Q)2
=

qi

|q|2

[ q0

Q2
− L(Q)

]

, (8.206)

∫
dΩv

4π

vivj

(v · Q)2
=

1

2Q2

(

δij −
qiqj

|q|2

)

−
1

2|q|2

[

1 − 2q0L(Q) +
(q0)2

Q2

](

δij − 3
qiqj

|q|2

)

,(8.207)

where vµ ≡ (1, vi), Q ≡ (q0,q), our metric convention is (+−−−), v · Q = q0 − v · q, and

L(Q) ≡
1

2|q|
ln

q0 + |q|

q0 − |q|
≈ −

iπ

2|q|
+

q0

|q|2
+

(q0)3

3|q|4
+ ... . (8.208)

The following identities (which can be derived by tedious explicit use of the relations obtained)
are sometimes very useful:

∫
dΩv

4π

vαQβ

(v · Q)2
ǫαβµνIµJν =

∫
dΩv

4π

vα

v · Q
ǫ0αµνIµJν , (8.209)

∫
dΩv

4π

vαvβ

(v · Q)2
Q[αIµ]Q[βJν]η

µν = 2

∫
dΩv

4π

vαvβ

v · Q
IαQ[βJ0] = 2

∫
dΩv

4π

vαvβ

v · Q
Q[αI0]Jβ . (8.210)

Here Q[αIµ] ≡ QαIµ − QµIα, and I, J are arbitrary Lorentz vectors.
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