8.2. From Euclidean correlator to spectral function

As an application of the relations given in Sec. 8.1, let us carry out an explicit computation
illustrating the steps. This computation will also find a practical application in Sec. 9.5.

To motivate the correlator, consider a model describing a right-handed neutrino (]\7 ) interacting
with the usual left-handed leptons (L, a = 1,2, 3) and the Higgs field ((;3 = iT9¢*) through Yukawa
interactions, with dimensionless but possibly complex coupling constants h,. The Minkowskian
Lagrangian can be written as
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where repeated indices are summed over, and ay, = (1—75)/2, ag = (1475)/2 are chiral projectors.

Let us now consider a correlator that would play the role of a self-energy correction for the
right-handed neutrino,
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Here Q is fermionic. In the Standard Model, the Higgs and lepton doublets have the forms
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Carrying out the contractions, we can write
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where we inserted the free scalar and fermion propagators, and denoted

Ey=,/mj; +p*, Ex=./mj +(p+aq?. (8.73)

Moreover the left and right projectors removed the mass term from the numerator. We have been
somewhat implicit about the assignments of the masses my,_, mg,. to the corresponding fields, but
for our purposes more details are not needed.

The essential issue in handling Eq. (8.72) is the treatment of the Matsubara sum. More generally,
let us inspect the structure
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where we assume that the function f in the numerator depends on its arguments at most linearly.
We can write:
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where we wrote
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0
Now we can make use of Egs. (8.30), (8.63) and time derivatives thereof:
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As an example, let us focus on the third structure in Eq. (8.80). The 7-integral can be carried
out, noting that gor is fermionic:
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Finally we set Gy — —i(¢” +40") and take the imaginary part according to Eq. (8.28). Further-
more, making use of Eq. (8.21), we note that
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whereby the denominator in Eq. (8.82) simply gets replaced with (—m) times a Dirac delta function.
Special attention needs to be paid here to the possibility that gy could also appear in the numerator
in Eq. (8.82); however, we can then write

iQo = 1Go + Fh — Es +FEs — 4 (8.84)
N

no discontinuity
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so that in total
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Moreover, we remember that Ey = mic + (p + q)?, so that we can write

o8 = [ G2 (5 a+ b pajay/nd, +p3) (5.56)

Let us now return to Eq. (8.72). We had there the object ZP, which now plays the role of the
function f in the analysis above, and according to Eq. (8.85) becomes

i = ipoo +ipjy; — E1n° +ipi(—iv) = P, (8.87)

where we also made use of the definition of the Euclidean Dirac-matrices in Eq. (4.35) (Eq. (8.85)
shows that any possible i) can also be replaced by @ ). Furthermore, the factors —1/2 in Eq. (8.72)
and (8.85) combine into 1/4. In total, then, the spectral function becomes

bas N\~ 100y [_4P1 d*py
paﬁ(Q) = T;OTLF (q )/(27T)32E1 /(27T)32E2 Fl apr X

X{ (2m)*'8W (P + P, — Q) npinp2 + . W

+ (27T)46(4)(P2_P1_Q)nBz(l—npl)—i— 2---4@

2

+ @n)*M(P — P — Q)npi(1 4 np2) + 1 el O

+ @) O (PL+ P+ Q) (1 —npr)(1+ nBz)}v “/ o

v 2

(8.88)

where we renamed P — P; and added the results of other channels as well. Furthermore, we
denoted np; = nr(E;), ng; = np(E;). The graphs in Eq. (8.88) illustrate the various processes
that the energy-momentum conserving delta functions correspond to, with a dashed line indicating
a scalar particle, a solid line a lepton, and a dotted line the right-handed neutrino.

Eq. (8.88) is for the moment our final result. We return, however, to the evaluation of the phase
space integrals in Sec. 9.5.

As a final remark, we note that the spectral function p has the important property that, in a
CP-symmetric situation, it is even in Q:

Pap(—Q) = pap(Q) - (8.89)

Let us demonstrate this explicitly with the 3rd channel in Eq. (8.88). The energy-dependent part
reads
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We see that we get back the structure of the 2nd channel, which indeed is the desired result,
because that is precisely what we need from the point of view of changing q — —q in the delta
function conserving the spatial momentum. Similarly, it can be checked that the 4th term goes
over into the 1st term, and vica versa.
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8.3. Exercise 11

In the text we made use of tree-level propagators, but in general the propagators need to be
resummed, and obtain a more complicated form. In this situation it may be useful to express them
as in the spectral representation of Eq. (8.25). In particular, the scalar propagator can in general
be written as

s 8(P+Q) 5.y [ dd ps(d®,q)
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while the fermion propagator contains two possible structures (or, if chirality is not a symmetry,
even more)?!,
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where u = (1, 0) is the plasma four-velocity. Carry out the steps from Eq. (8.72) to (8.88) in this
situation.

Solution to Exercise 11

The structure in Eq. (8.74) now becomes

. TZ Z / dwl/ dws fr( 1P07P7 )PF(C‘lep)pS(“J?’p—i_q)7 (8.93)
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where we assume that the function fz in the numerator depends on its arguments at most linearly.
We can write:
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Employing Egs. (8.76), (8.31) and (8.62), as well as the time derivative of the last one,
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21H.A. Weldon, Effective Fermion Masses of O(gT) in High Temperature Gauge Theories with Exact Chiral
Invariance, Phys. Rev. D 26 (1982) 2789.
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The 7-integral can be carried out, noting that go¢ is fermionic:
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Finally we set go — —i(q” +40") and take the imaginary part. Making use of Eq. (8.83), the
denominator in Eq. (8.97) simply gets replaced with (—=) times a Dirac delta function. Thus, in
total,
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where we parallelled the steps in Eq. (8.85). Moreover, representing

sora= [ (012; (2776 (q + p — P2)g(p2) (8.99)

and defining Py = (w1,p) = (w1,P1), P2 = (w2, p2), we get
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where ng; = np(w;), npi = np(w;). If we insert the free spectral functions from Eqs. (8.36), (8.66),
and note that in free limit py = 0, this result goes over into Eq. (8.88).
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