
7. Finite density

Let us consider a system which possesses some conserved charge, Q. We assume the conserved
charge to be additive, i.e. the charge can in principle have any (integer) value. Physical examples
of possible Q’s include:

• the baryon number B and the lepton number L. (In fact, within the Standard Model, the
combination B + L is not conserved because of an anomaly19, so that strictly speaking only
the linear combination B−L is conserved; however, in practice the rate of violation of B +L
is exponentially small, so that we can treat both B and L as conserved quantities.)

• if weak interactions are switched off (i.e., if we inspect phenomena at a time scale well below
10−10 s, or distances well below 1 cm within the collision region of a particle experiment),
then quantities like the strangeness S and the isospin I are also conserved.

• in some supersymmetric theories, there is a quantity called the R-charge which is conserved.

• in non-relativistic field theories, the particle number N is conserved.

The case of a conserved Q turns out the be analogous to the case of gauge fields, treated on
p. 58; indeed, as we will see, the introduction of a chemical potential, µ, as a conjugate variable to
Q, is closely related to the introduction of the gauge fields, Ã0, that were needed for imposing the
Gauss law, “Q = 0”, in the gauge field case. However, in contrast to that situation, we will work
in a grand canonical ensemble in the following, so that the quantum mechanical partition function
is in general of the type

Z(T, µ) ≡ Tr
[

e−β(Ĥ−µQ̂)
]

. (7.1)

On p. 58 the projection operator δ
Q̂,0̂ was effectively imposed as

δ
Q̂,0̂ =

∫ π

−π

dc

2π
eicQ̂ , (7.2)

with c ∝ Ã0. Comparing Eqs. (7.1), (7.2), we see that a chemical potential corresponds to some-
thing like a constant purely imaginary gauge field Ã0.

Now, let us go back to classical field theory for a moment, and recall that if the system possesses
a global U(1) symmetry, then there exists, according to Noether’s theorem, a conserved global
current, Jµ. The integral of the zero-component of the current, i.e. charge density, over the spatial
volume, defines the conserved charge,

Q ≡
∫

ddxJ0(t,x) . (7.3)

Conversely, we can assume that in order to describe a system which does have a conserved global
charge, then there should exist a global U(1) symmetry in its field-theoretic description. In general
this indeed is the case, and we will restrict to these situations in the following. (One notable
exception is free field theory where, due to lack of interactions, particle number is conserved even
without a global symmetry; another is that a discrete symmetry, φ → −φ, may also lead to the
concept of a generalized “parity”, which acts as a multiplicative quantum number, with possible
values ±1; however, in this case no non-trivial charge density ρ = 〈Q̂〉/V can be defined in the
theormodynamic limit).

An immediate consequence of the “inverse” use of the Noether theorem is that a real scalar
field cannot describe a system with an additive conserved charge. As the simplest example, let us
therefore consider a system of a complex scalar field.

19G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett. 37 (1976) 8.
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7.1. Complex scalar field with a finite chemical potential

The classical Lagrangian of a complex scalar field reads

LM = ∂µφ∗∂µφ − V (φ) , (7.4)

where the potential has the form

V (φ) ≡ m2φ∗φ + λ(φ∗φ)2 . (7.5)

The system is symmetric in the global (position-independent) phase transformation

φ → eiαφ , φ∗ → e−iαφ∗ , (7.6)

where α ∈ R. The corresponding Noether current is defined as

Jµ ≡ ∂LM

∂(∂µφ)

δφ

δα
+

∂LM

∂(∂µφ∗)

δφ∗

δα

= ∂µφ∗ iφ − ∂µφ iφ∗

= i[∂µφ∗φ − φ∗∂µφ] = 2 Im[φ∗∂µφ] . (7.7)

Let us note that the overall sign (i.e., what we call particles and what antiparticles) is a matter of
convention; we could equally well have defined the global symmetry through φ → e−iαφ , φ∗ →
eiαφ∗, and then Jµ would have the opposite sign.

The first task now, as always, is to write down a path integral expression for the partition
function in Eq. (7.1). Subsequently, we may try to evaluate the partition function, in order to see
what kind of phenomena take place in this system.

In order to write down the path integral, we start from the known expression of Z of a real scalar
field without chemical potential, i.e. the generalization to field theory of Eq. (1.37):

Z ∝
∫

periodic

Dφ1

∫

Dπ1 exp

{

−
∫ β

0

dτ

∫

x

[
1

2
π2

1 − iπ1∂τφ1 +
1

2
(∂iφ1)

2 + V (φ1)

]}

, (7.8)

where π1 = ∂φ1/∂t. Here the combination 1
2 π2

1 + 1
2 (∂iφ1)

2 + V (φ1) is nothing but the classical
Hamiltonian density, H(π1, φ1).

In order to be able to make use of Eq. (7.8), let us rewrite the complex scalar field φ as φ =
(φ1 + iφ2)/

√
2, φi ∈ R. Then

∂µφ∗∂µφ =
1

2
∂µφ1∂µφ1 +

1

2
∂µφ2∂µφ2 , φ∗φ =

1

2
(φ2

1 + φ2
2) , (7.9)

and the classical Hamiltonian density reads

H =
1

2

[

π2
1 + π2

2 + (∂iφ1)
2 + (∂iφ2)

2 + m2φ2
1 + m2φ2

2

]

+
1

4
λ(φ2

1 + φ2
2)

2 . (7.10)

In order to go to the grand-canonical ensemble, we need to add from Eqs. (7.3), (7.7) the classical
version of −µQ̂ to the Hamiltonian, cf. Eq. (7.1):

−µQ = −µ

∫

x

Im
[

(φ1 − iφ2)(∂tφ1 + i∂tφ2)
]

= −µ

∫

x

(φ1π2 − φ2π1) =

∫

x

µ(π1φ2 − π2φ1) . (7.11)

Since the charge can be expressed in terms of the canonical variables, nothing changes in the
derivation of the path integral, and we can simply replace the Hamiltonian of Eq. (7.8) by the sum
of Eqs. (7.10), (7.11).

86



Finally, we again carry out the Gaussing integrals over π1, π2:

∫

dπ1 exp

{

−
[
1

2
π2

1 + π1

(

−i
∂φ1

∂τ
+ µφ2

)]}

= const. × exp

{

−1

2

(
∂φ1

∂τ
+ iµφ2

)2}

, (7.12)

∫

dπ2 exp

{

−
[
1

2
π2

2 + π2

(

−i
∂φ2

∂τ
− µφ1

)]}

= const. × exp

{

−1

2

(
∂φ2

∂τ
− iµφ1

)2}

. (7.13)

Afterwards, we can go back to the complex notation:

1

2

(
∂φ1

∂τ
+ iµφ2

)2

+
1

2

(
∂φ2

∂τ
− iµφ1

)2

=
1

2

[(
∂φ1

∂τ

)2

+

(
∂φ2

∂τ

)2]

+ µ × i

[

φ2
∂φ1

∂τ
− φ1

∂φ2

∂τ

]

︸ ︷︷ ︸

φ∂τ φ∗−φ∗∂τ φ

−1

2
µ2(φ2

1 + φ2
2)

= [(∂τ − µ)φ∗][(∂τ + µ)φ] . (7.14)

In total, then, the path integral representation for the grand canonical partition function reads

Z(T, µ) = C

∫

periodic

Dφ exp

{

−
∫ β

0

dτ

∫

x

[

(∂τ − µ)φ∗(∂τ + µ)φ + ∂iφ
∗∂iφ + m2φ∗φ + λ(φ∗φ)2

]}

.

(7.15)
We observe that, as anticipated, µ appears in a way reminiscent of an imaginary gauge field Ã0.

Let us finally work out the properties of the free theory in the presence of µ. Going to momentum
space, the quadratic part of the Euclidean action becomes

SE =
∑
∫

P̃b

φ̃∗(P̃ )
[

(−iωn − µ)(iωn + µ) + p2 + m2
]

φ̃(P̃ )

=
∑
∫

P̃b

φ̃∗(P̃ )φ̃(P̃ )
[

(ωn − iµ)2 + p2 + m2
]

. (7.16)

We observe that the chemical potential corresponds simply to a shift of the Matsubara freqencies by
a constant imaginary term (this is the reason for considering a corresponding sum in Eq. (2.36)).
In particular, the propagator reads

〈φ̃(P̃ )φ̃∗(Q̃)〉0 =δ̄(P̃ − Q̃)
1

(ωn − iµ)2 + p2 + m2
, (7.17)

while the free energy density is obtained from Eqs. (2.44), (2.49), after replacing c → −iµ and
noting that for a complex scalar field, all Fourier modes are independent, whereby Eqs. (2.44),
(2.49) are to be multiplied by a factor 2:

f(T, µ) =

∫
ddp

(2π)d

{

E + T

[

ln

(

1 − e−
E+µ

T

)

+ ln

(

1 − e−
E−µ

T

)]}∣
∣
∣
∣
E=

√
p2+m2

. (7.18)

We may wonder how the existence of µ 6= 0 affects the infrared problem of finite-temperature
field theory. In Sec. 2.6 we found that the high-temperature expansion (T ≫ m) of Eq. (7.18) has
a peculiar structure, because Eq. (7.18) has a branch cut starting at m2 = 0. From the last term in
Eq. (7.18), we note that this problem has become worse in the presence of µ > 0: now the integral
is not defined even at a finite m if µ > m, because then exp(−(E − µ)/T ) > 1 at small |p|. Of
course, in an interacting theory, thermal corrections generate an effective mass m2

eff ∼ λT 2, which
postpones the problem to larger µ. Nevertheless, at large enough µ it still exists.

It turns out that there is a significant physics consequence from this infrared problem: the
existence of Bose-Einstein condensation, to which we now turn.
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7.2. Effective potential and Bose-Einstein condensation

In order to treat properly complex scalar field theory with a chemical potential, two things need
to be realized:

(i) In contrast to gauge field theory, the infrared problem exists now even in the non-interacting
limit. Therefore it cannot be cured by a non-perturbatively generated confinement scale.
Rather, it corresponds to a strong dependence of the properties of the system on the volume,
so we should indeed keep the volume finite.

(ii) The chemical potential µ is a most useful quantity in theoretical computations, but it is
somewhat “abstract” from a practical point of view; the physical properties of the system
are typically best characterised not by µ but by the variable conjugate to µ, i.e. the number
density of the conserved charge. Therefore, rather than trying to give µ some specific value,
we should in the first place fix the number density.

So, let us put the system in a periodic box, V = L1L2L3. The spatial momenta get discretized
like in Eq. (2.9),

p = 2π
(n1

L1
,
n2

L2
,
n3

L3

)

, (7.19)

with ni ∈ Z. The mode with ωb
n = 0,p = 0 will be called the condensate, and denoted by φ̄.

We now rewrite the partition function in Eq. (7.15) as

Z(T, µ) =

∫ ∞

−∞

dφ̄

{∫

periodic,P̃ 6=0

Dφ′ e−SE[φ=φ̄+φ′]

}

≡
∫ ∞

−∞

dφ̄ exp

[

−V

T
Veff(φ̄)

]

. (7.20)

Here φ′ contains all modes with P̃ 6= 0, and Veff is called the (constrained) effective potential. The

factor V/T is the trivial spacetime integral,
∫ β

0
dτ

∫

V
ddx.

Let us write down the effective potential explicitly for the free theory, λ = 0. From Eqs. (7.15),
(7.16), we get

SE [φ = φ̄ + φ′] =
V

T
(m2 − µ2)φ̄∗φ̄ +

∑
∫

P̃b 6=0

φ̃∗(P̃ )φ̃(P̃ )
[

(ωn − iµ)2 + p2 + m2
]

, (7.21)

where we made use of the fact that the crossterm between φ̄ and φ′ vanishes, given that by definition
φ′ has no zero-momentum mode:

∫ β

0

dτ

∫

V

ddxφ′ = 0 . (7.22)

Note that the latter term in Eq. (7.21) does not correspond to only non-zero Matsubara modes:
Matsubara zero-modes (ωb

n = 0) with non-zero spatial momentum p 6= 0 are also included. In
the limit of a large volume, mL ≫ 1, the omission of a single mode does not matter (its effect is
∝ (T/V ) ln(m2 − µ2)). The path integral over the latter term yields then Eq. (7.18), and in total
we get

Veff(φ̄) = (m2 − µ2)φ̄∗φ̄ + f(T, µ) . (7.23)

Physically, the first term corresponds to the contribution to the free-energy density from particles
that have formed a condensate, while the latter term represents free particles in the plasma.

Now, if we go toward zero temperature, T ≪ m, and assume furthermore that µ <∼m, then the
latter term in Eq. (7.18) vanishes. The vacuum contribution left over is independent of µ, and can
be omitted as well. Therefore

Veff(φ̄) ≃ (m2 − µ2)φ̄∗φ̄ . (7.24)
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The remaining task is to carry our the final regular integral over φ̄ in Eq. (7.20). At this point we
need to make contact with the particle number density. From the definition Z = Tr [exp(−βĤ +
βµQ̂)], we obtain

ρ ≡ 〈Q̂〉
V

=
T

V

∂ lnZ
∂µ

(7.25)

=

∫ ∞

−∞
dφ̄ 2µφ̄∗φ̄ exp

[

−V
T

Veff(φ̄)

]

∫ ∞

−∞
dφ̄ exp

[

−V
T

Veff(φ̄)

] . (7.26)

Let us now consider a situation where we decrease the temperature towards low values, T ≪ m,
and attempt simultaneously to keep the particle number density, the left-hand side of Eq. (7.26),
fixed. How should we choose µ in this situation? There are three possibilities:

(i) if |µ| > m, the integrals are not defined (in the free theory). This simply means that such
choices of µ are not physically meaningful.

(ii) if |µ| < m, the integrals can be carried out: in fact their result corresponds to the “propaga-
tor” of φ̄:

ρ = 2µ
T

V (m2 − µ2)
. (7.27)

We note that if T → 0, then ρ → 0. This conflicts with our assumption that the particle
number density is kept constant; therefore this range of µ is again not physically relevant for
our situation.

(iii) According to the preceding points, the only possible choice is |µ| = m. More specifically, if
ρ > 0, we need to choose µ = +m. According to Eq. (7.27), this situation needs in fact to
be approached by a careful tuning of µ → m− as we put T → 0. However, assuming that
this is done, and that we furthermore add an infinitesimal interaction λ > 0 to the theory so
that the integrals in Eq. (7.26) are defined, we obtain the relation

ρ = 2m〈φ̄∗φ̄〉 > 0 . (7.28)

Eq. (7.28) manifests the phenomenon of Bose-Einstein condensation (at zero temperature in the
free limit): the conserved particle number is converted to a non-zero scalar condensate.

Obviously, it would also be easy to include the effects of a finite temperature, by starting from
Eq. (7.23), and the effects of interactions, by keeping λ > 0. These very interesting developments go
beyond the scope of the present lectures, however. On the other hand, the concepts of a condensate
and an effective potential will be met again in later chapters.
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