
6.3. Dimensionally reduced effective field theory for hot QCD

We now apply the recipe of the previous section to the problem outlined in Sec. 6.1.

(1) Identification of soft degrees of freedom. As discussed in Sec. 6.1, the soft degrees of
freedom are the bosonic Matsubara zero-modes. Since they do not depend on the coordinate τ ,
they live in d = 3 − 2ǫ spatial dimensions; thus the construction of the effective theory is in this
context called high-temperature dimensional reduction13.

(2) Symmetries. First of all, since the heat bath breaks Lorentz invariance, the time direction
and the space directions are not symmetric. Indeed, the effective theory needs only to be invariant
in spatial rotations and translations.

Second, the full theory possesses discrete symmetries; QCD is invariant in C, P and T separately.
The effective theory inherits some reflection of these symmetries; in turns out, for instance, that
Leff is symmetric in Ã0 → −Ã0 (unless, say, C of QCD is broken by giving a chemical potential to
the quarks).

Third, consider gauge symmetries, Eqs. (5.5), (5.6):

Ã′
µ = UÃµU−1 +

i

g
U∂µU−1 . (6.26)

Since we now restrict to static (i.e. τ -independent) fields, U (or θa) should not depend on τ either.
Thus, the effective theory should be invariant under

Ã′
i = UÃiU

−1 +
i

g
U∂iU

−1 , (6.27)

Ã′
0 = UÃ0U

−1 . (6.28)

In other words, the spatial components Ãi remain gauge fields, while the temporal components Ã0

have turned into scalar fields in the adjoint representation (cf. Eq. (5.9)).

With these ingredients, we can write down the general form of the effective Lagrangian. It is
illuminating to start by simply rewriting the full Lagrangian, Eq. (5.34), in terms of the soft degrees
of freedom. Noting from Eq. (5.32),

F a
0i ≡ ∂τAa

i −Dab
i Ãb

0 , (6.29)

that in the static case, F a
i0 = Dab

i Ãb
0, we get

LE =
1

4
F a

ijF
a
ij +

1

2
(Dab

i Ãb
0)(D

ac
i Ãc

0) . (6.30)

It is often convenient to note that

T aDab
i Ãb

0 = ∂iA0 + gfacbT aAc
i Ã

b
0 = ∂iA0 − ig[Ai, Ã0] = [Di, Ã0] , (6.31)

where Di = ∂i − igAi is the covariant derivative in the fundamental representation. Thereby,

L
(0)
eff =

1

4
F̃ a

ijF̃
a
ij + Tr {[Di, Ã0][Di, Ã0]} . (6.32)

13P. Ginsparg, First and second order phase transitions in gauge theories at finite temperature, Nucl. Phys. B 170
(1980) 388; T. Appelquist and R.D. Pisarski, High-temperature Yang-Mills theories and three-dimensional Quantum

Chromodynamics, Phys. Rev. D 23 (1981) 2305.
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Next, we complete the tree-level structure by adding all operators allowed by the symmetries. It
is useful to proceed in order of increasing dimensionality. The following structures can be written
down:

dim = 2 : Tr [Ã2
0] ; (6.33)

dim = 4 : Tr [Ã4
0] , (Tr [Ã2

0])
2 ; (6.34)

dim = 6 : Tr {[Di, Fij ][Dk, Fkj ]} , . . . . (6.35)

In the last case we have only shown one example; in total there is quite a large number of six-
dimensional operators14.

Combining Eqs. (6.32)–(6.34), we can write the effective action as

Seff =
1

T

∫

ddx

{

1

4
F̃ a

ijF̃
a
ij + Tr ([Di, Ã0][Di, Ã0]) + m̃2Tr [Ã2

0] + λ̃(1)(Tr [Ã2
0])

2 + λ̃(2)Tr [Ã4
0] + . . .

}

.

(6.36)

Here the prefactor 1/T comes from the integration
∫ β

0 dτ ; since none of the soft fields depend on τ ,
we just get 1/T , like in classical statistical physics. Sometimes this theory is referred to as EQCD,
for “Electrostatic QCD”15.

(3) Matching. If we restrict to 1-loop order, then the matching for the parameters in Eq. (6.36)
is rather simple, as explained in Eq. (6.14): we simply need to compute Green’s functions with
soft fields (with vanishing external momenta) on the external legs, and heavy modes in the loop.
For the parameter m̃2, this is precisely the computation that we carried out in Sec. 5.5. Therefore,
the result can be read directly from Eq. (5.96):

m̃2 = g2T 2

(

Nc

3
+

Nf

6

)

+ O(g4T 2) . (6.37)

The parameters λ̃(1), λ̃(1) can, in turn, be obtained by considering 4-point functions with soft
modes of A0 on the external legs, and non-zero Matsubara modes in the loop:

+ + + + . (6.38)

Clearly the effect is of O(g4) and, using the same notation as in Eq. (5.96), the actual values are16

λ̃(1) =
g4

4π2
+ O(g6) , λ̃(2) =

g4

12π2
(Nc − Nf) + O(g6) . (6.39)

(4) Truncation of higher dimensional operators. In some sense the most non-trivial and
critical part of any effective field theory construction is the analysis of the accuracy that can be
reached with the effective theory, once higher dimensional operators are dropped. In other words,
the challenge is to determine the constant k in Eq. (6.11). Let us illustrate the procedure by
considering the error that we make by dropping the operator in Eq. (6.35).

We need to know, first of all, the parametric magnitude of the coefficient with which the oper-
ator would enter Leff, if it were kept. This operator could be generated through the momentum
dependence of graphs like n6=0

∼
g2

T 2
(∂iF

a
ij)

2 , (6.40)

14S. Chapman, A new dimensionally reduced effective action for QCD at high temperature, Phys. Rev. D 50
(1994) 5308.

15E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996) 3421.
16S. Nadkarni, Dimensional reduction in finite temperature Quantum Chromodynamics. 2, Phys. Rev. D 38

(1988) 3287; N.P. Landsman, Limitations to dimensional reduction at high temperature, Nucl. Phys. B 322 (1989)
498.
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where the dashed lines stand for the spatial components Ai. If we now drop this term, the
corresponding Green’s function will not be computed correctly; however, it still has some value,
namely that which would be obtained within the effective theory:

Ã0

∼ g2(∂iF
a
ij)

2T

∫

p

1

(p2 + m̃2)3
∼

g2T

m̃3
(∂iF

a
ij)

2 . (6.41)

Here we noted that there are two propagators, but to account for the dependence on the external
momentum (represented by the derivative ∂i in front of F a

ij), we need to Taylor-expand in p to
first non-trivial order.

We note from Eq. (6.41) that the Green’s function is also non-zero within the effective theory;
in fact, the contribution in Eq. (6.41) is larger than that in Eq. (6.40)! Therefore, the error made
through the omission of Eq. (6.40) is small:

δΓ̃

Γ̃
∼

g2

T 2

m̃3

g2T
∼

(m̃

T

)3

∼ g3 . (6.42)

In other words, for the dimensionally reduced effective theory of hot QCD, we get k = 3.17

Once the effective theory of Eq. (6.36) is there, we can take a further step: the field Ã0 is massive,
and can be integrated out. Thereby we arrive at an even simpler effective theory:

S′
eff =

1

T

∫

ddx

{

1

4
˜̃F

a

ij
˜̃F

a

ij + . . .

}

. (6.43)

Sometimes this theory is referred to as MQCD, for “Magnetostatic QCD”15. It is important to
realise that this theory, the three-dimensional Yang-Mills theory (up to higher order operators such

as the one in Eq. (6.35)), only has one parameter, the gauge coupling. Furthermore, if the fields ˜̃A
a

i

are rescaled by an appropriate power of T 1/2, ˜̃A
a

i → ˜̃A
a

i T 1/2, then the coefficient 1/T in Eq. (6.43)

disappears. The coupling constant squared that appears afterwards is ˜̃g
2
T , and this is the only

scale in the system. Therefore all dimensionfull quantities (correlation lengths, string tension, free

energy density, ...) must be proportional to an appropriate power of ˜̃g
2
T , with a non-perturbative

coefficient. This is the essence of the non-perturbative physics pointed out by Linde10.

The implication of the complete setup for the weak-coupling expansion is the following. Consider
a generic observable O, with an expectation value

〈O〉 ∼ gmT n[1 + #gp + ...] . (6.44)

It could now happen that: (i) p is even; # is determined by the heavy scale ∼ πT , and is purely
perturbative; (ii) p is even or odd; # is determined by the intermediate scale ∼ gT , and is purely
perturbative; (iii) m+ p is even; # is determined by the soft scale ∼ g2T , and is non-perturbative;
(iv) p > k; # can only be determined correctly by adding higher dimensional operators to the
effective theory.

A final remark, relevant for effective field theories quite in general, is in order. Indeed, we have
seen that the omission of higher order operators usually leads to a small error, since the same
Green’s function is produced with a larger coefficient within the effective field theory. It could
happen, however, that there is some approximate symmetry in the full theory, which becomes

exact within the effective theory, if we truncate to some order. For instance, many Grand Unified
Theories induce violation of baryon minus lepton number (B−L), while in the Standard Model this
is an exact symmetry. It is then only broken by some higher dimensional operator18. Therefore, if
we consider B − L violation with the Standard Model, we make an infinitely large relative error.

17K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, High temperature dimensional reduction and

parity violation, Phys. Lett. B 423 (1998) 137.
18S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566; F. Wilczek and

A. Zee, Operator Analysis of Nucleon Decay, Phys. Rev. Lett. 43 (1979) 1571.
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6.4. Exercise 9

Let us consider the full theory

Lfull ≡
1

2
∂µφ∂µφ +

1

2
m2φ2 +

1

2
∂µH∂µH +

1

2
M2H2 +

1

6
γHφ3 . (6.45)

For simplicity, we assume that the dimensionality of spacetime is 3 (i.e. d = 2−2ǫ in our standard
notation). Moreover we work at zero temperature, like in Sec. 6.2.

(a) Integrating out H in order to construct an effective theory amounts to the computation of
the graph

. (6.46)

After Taylor-expanding in external momenta, write down all the corresponding operators.

(b) Let us consider the 4-point function of φ̃’s at vanishing external momenta. What kind of
contributions do the operators computed in part (a) give to this Green’s function?

(c) Let us then consider directly the graph

(6.47)

at vanishing external momenta. How does the result compare with the Taylor-expanded
result of part (b)? What is the lesson?

Solution to Exercise 9

(a) The construction of the effective theory proceeds essentially as in Eq. (3.56), except that only
the H-fields are integrated out. We get

Seff ≈
〈

−
1

2
S2

I

〉

H,connected

= −
γ2

72

∫

x,y

φ3(x)φ3(y)〈H(x)H(y)〉0

= −
γ2

72

∫

x,y

φ3(x)φ3(y)

∫

p

eip·(x−y)

p2 + M2

= −
γ2

72

∫

x,y

φ3(x)φ3(y)

∫

p

eip·(x−y)

[ ∞
∑

n=0

(−1)n(p2)n

(M2)n+1

]

= −
γ2

72

∫

x,y

φ3(x)φ3(y)

[ ∞
∑

n=0

(∇2
x)n

(M2)n+1

]

δ̄(x − y)

= −
γ2

72

∫

x

∞
∑

n=0

φ3(x)
(∇2

x)n

(M2)n+1
φ3(x) . (6.48)

(b)

〈

φ̃(0)φ̃(0)φ̃(0)φ̃(0)e−Seff

〉

⇒
γ2

72

〈

φ̃(0)φ̃(0)φ̃(0)φ̃(0)

∫

P1,...,P6

δ̄(ΣiPi)φ̃(P1) . . . φ̃(P6)
〉

∞
∑

n=0

[−(P4 + P5 + P6)
2]n

(M2)n+1
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=
γ2

72
× 6 × (2 × 3 × 2 + 3 × 4 × 2)

∫

P1,...,P6

δ̄(ΣiPi)

∞
∑

n=0

[−(P4 + P5 + P6)
2]n

(M2)n+1

×〈φ̃(0)φ̃(P1)〉〈φ̃(0)φ̃(P2)〉〈φ̃(0)φ̃(P5)〉〈φ̃(0)φ̃(P6)〉〈φ̃(P3)φ̃(P4)〉

= 3γ2 δ̄(0)

(m̃2)4

∫

P3

1

P 2
3 + m̃2

∞
∑

n=0

(−P 2
3 )n

(M2)n+1
. (6.49)

The integrals in Eq. (6.49) can all be carried out in dimensional regularization; for instance,
the two leading terms read

n = 0 :
1

M2

∫

P3

1

P 2
3 + m̃2

=
1

M2

(

−
m̃

4π

)

, (6.50)

n = 1 : −
1

M4

∫

P3

P 2
3

P 2
3 + m̃2

=
m̃2

M4

∫

P3

1

P 2
3 + m̃2

= −
1

M4

m̃3

4π
, (6.51)

where we made use of Eq. (2.85). We note that, indeed, the terms get smaller with increasing
n, apparently justifying a posteriori the Taylor-expansion that we carried out in part (a).

(c) Let us, on the other hand, carry out the integral corresponding to Eq. (6.47), without a
Taylor expansion. The contractions remain as in part (b), and we simply need to replace the
integral in Eq. (6.49) by

∫

P3

1

P 2
3 + m̃2

1

P 2
3 + M2

=

∫

P3

1

M2 − m̃2

[

1

P 2
3 + m̃2

−
1

P 2
3 + M2

]

=
1

M2 − m̃2

(

−1

4π

)

(m̃ − M)

=
1

4π(M + m̃)

=
1

4πM

(

1 −
m̃

M
+

m̃2

M2
+ . . .

)

. (6.52)

Comparing now Eqs. (6.50), (6.51) with Eq. (6.52), we note that by carrying out the Taylor-
expansion, i.e. the naive matching to various effective parameters, too early, we missed the
leading contribution, the dominant term in Eq. (6.52)! The largest term we found, Eq. (6.50),
is only next-to-leading order in Eq. (6.52).

The reason for this problem is the same as in Eq. (6.21): it has to be taken into account
that the light fields φ can also have large momenta P3, P3 ∼ M , in which situation a Taylor-
expansion of 1/(P 2

3 +M2) is not allowed. Rather, we have to view Eq. (6.47) in analogy with
Eq. (6.21):

= + . (6.53)

The first term here corresponds to a naive replacement of Eq. (6.46) by a momentum-
independent 6-point vertex, times a dynamical effect from soft fields; indeed the result,
Eq. (6.50), is non-analytic in the parameter m̃2.

The second term, on the other hand, corresponds to a contribution from hard φ-modes to
the effective 4-point vertex. The result, the leading term in Eq. (6.52), is indeed analytic in
the parameter m̃2.

84


