
5.6. Free energy density to O(g3)

As an immediate application of the results of the previous section, we compute the free energy
density of QCD to O(g3), parallelling the method introduced for scalar field theory in Exercise 5.
We recall that the essential insight is to correct the quadratic part of the Lagrangian of the
Matsubara zero modes by the effective thermal mass computed from the full propagator, and to
treat minus the same term as part of the interaction Lagrangian. The “non-interacting” free energy
density computed with the corrected propagator then yields the result for the ring sum, while the
bilinear interaction term cancels the corresponding contributions order by order from multiloop
graphs. In the present case, given the result in Eq. (5.95), only the zero-components of the gauge
fields need to be corrected.

The correction of O(g3) to the tree-level result7 in Eq. (5.61) can therefore be immediately
written down, by employing Eq. (2.86) and taking into account that there are N2

c − 1 gauge field
components:
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where the effective mass mE was taken from Eq. (5.96).

Next, we need to consider the contributions of O(g2). In analogy with Eq. (3.106), these terms8

come from the non-zero mode contributions to 2-loop graphs:

f(1)(T )
∣

∣

QCD
=

〈

SI −
1

2
S2

I + . . .
〉

0,connected,drop overall
R

x

. (5.98)

At this point, it is useful to compare Eq. (5.98) with the computation of the full propagator in the
previous section, Eq. (5.94). We note that, apart from an overall minus sign, the two computations
are quite similar; the main difference is in a combinatorial factor. In fact, the claim is that we only
need to “close” the gluon line in the results of the previous section, and simultaneously divide the
graph by 1/2n, where n is the number of gluon lines in the vacuum graph. Let us prove this claim
by direct inspection.

Consider first the contribution from the 4-gluon vertex. In vacuum graphs, this leads to the
combinatorial factor

〈AAAA〉0,c = 3〈AA〉0 〈AA〉0 , (5.99)

while in the propagator we got

−〈AA AAAA〉0,c = −4 × 3〈AA〉0 〈AA〉0 〈AA〉0 , (5.100)

so there is indeed a difference of −4 = −2 × n, with n = 2 being the number of contractions in
Eq. (5.99). Similarly, with the contribution from two 3-gluon vertices, the vacuum graphs lead to
the combinatorial factor

−〈AAA AAA〉0,c = −3 × 2〈AA〉0 〈AA〉0 〈AA〉0 , (5.101)

7J.I. Kapusta, Quantum Chromodynamics at High Temperature, Nucl. Phys. B 148 (1979) 461.
8E.V. Shuryak, Theory of Hadronic Plasma, Sov. Phys. JETP 47 (1978) 212; S.A. Chin, Transition to Hot Quark

Matter in Relativistic Heavy Ion Collision, Phys. Lett. B 78 (1978) 552.
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while in the propagator we got

〈AA AAA AAA〉0,c = 6 × 3 × 2〈AA〉0 〈AA〉0 〈AA〉0 〈AA〉0 , (5.102)

so there is indeed a difference of −6 = −2×n, with n = 3 the number of contractions in Eq. (5.101).
Finally, the ghost and fermion contributions to the vacuum graphs lead to the combinatorial factor

−〈c̄ A c c̄A c〉0,c = 〈AA〉0 〈c c̄〉0 〈c c̄〉0 , (5.103)

while in the propagator we got

〈AA c̄ A c c̄ A c〉0,c = −2〈AA〉0 〈AA〉0 〈c c̄〉0 〈c c̄〉0 , (5.104)

so there is indeed a difference of −2 = −2×n, with n = 1 the number of contractions in Eq. (5.103).

The contribution of the 4-gluon vertex can hence be extracted from Eq. (5.68):
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The contribution of the 3-gluon vertices can be extracted from Eq. (5.73); noting from Eq. (5.74)
that

δµν Dµβγ(−P̃ , S̃, P̃ − S̃) Dνβγ(P̃ ,−S̃,−P̃ + S̃)
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we get
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Note that here it is important to keep the full P̃ -dependence, unlike in Eq. (5.75), because all

values of P̃ are integrated over.

Similarly, the contribution of the ghost loop can be extracted from Eq. (5.84):
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Finally, the contribution of the fermion loop can be extracted from Eq. (5.90):
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We again simplify by setting m/T → 0, and then get
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In the last step, careful attention needs to be paid to the nature of Matsubara frequencies appearing
in the propagators.

Adding together the terms from Eqs. (5.105), (5.107), (5.108), (5.110); setting d = 3 (there are
no divergences); and using Ib

T (0) = T 2/12, I f
T (0) = −T 2/24, we get
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Combining finally the effects from Eqs. (5.61), (5.111), and (5.97), we get
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were we have denoted αs ≡ g2/4π.

A few remarks are in order:

• The result in Eq. (5.112) can be compared with that for scalar field theory in Eq. (3.100).
The general structure is seen to be identical. In particular, in both cases, the first relative
correction is negative. This means that the interactions between the particles in a plasma
tend to decrease the pressure that the plasma exerts on the walls of an imaginary container.

• The second correction is positive, however. Such an alternating structure, even though in
principle convergent (in the usual asymptotic sense) for small enough renormalized coupling,
indicates that it may be difficult to quantitatively estimate the magnitude of radiative cor-
rections to the non-interacting result. [But recall: 1 − 1

2 + 1
3 − 1

4 ... = ln 2 = 0.693...,
1 + 1

2 + 1
3 + 1

4 ... = ∞; maybe an alternating structure is good after all!]

• As of today (fall 2007), the coefficients of the four subsequent terms, of orders O(α2
s lnαs),

O(α2
s), O(α

5/2
s ), and O(α3

s lnαs), are also known.9 Like for scalar field theory, this progress
is possible via the use of effective field theory methods that we discuss in the next chapter.

9T. Toimela, The next term in the thermodynamic potential of QCD, Phys. Lett. B 124 (1983) 407; P. Arnold and
C. Zhai, The three loop free energy for pure gauge QCD, Phys. Rev. D 50 (1994) 7603; C. Zhai and B. Kastening, The

free energy of hot gauge theories with fermions through g5, Phys. Rev. D 52 (1995) 7232; K. Kajantie, M. Laine,
K. Rummukainen and Y. Schröder, The pressure of hot QCD up to g6 ln(1/g), Phys. Rev. D 67 (2003) 105008
[hep-ph/0211321].
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5.7. Exercise 8

In the computation in Sec. 5.6, we assumed that only the Matsubara zero modes of the fields Aa
0

need to be resummed (i.e., get an effective thermal mass). We do know that fermions do not need
to be resummed in any case, but how about ghots? Show that ghosts do not get any thermal mass,
and thus behave like the spatial components of the gauge fields.

Solution to Exercise 8

The tree-level ghost propagator is in Eq. (5.46), and we now consider corrections to this expressions.
The relevant vertex is the one in Eq. (5.50). We obtain
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Inserting the gluon propagator from Eq. (5.63) and the free ghost propagator from Eq. (5.46), let
us inspect in turn colour indices, Lorentz indices, and momenta. The colour contractions result in
a factor

δacδegδibδdhf cdefghi = fadefedb = −Ncδ
ab . (5.114)

The spacetime indices yield simply δαβ . The momentum dependence can be written as

δ̄(P̃ − R̃)δ̄(T̃ − Ũ)δ̄(X̃ − Q̃)δ̄(S̃ + Ṽ )
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We can now integrate over R̃, Ũ , X̃, Ṽ and S̃. Thereby
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where we renamed T̃ → S̃.

We note that the result here is proportional to the external momentum P̃ . Therefore, the
result in Eq. (5.116) does not represent an effective mass correction; it is rather a wave function
(re)normalization contribution.
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