
5.2. Gauge fixing and ghosts

Eq. (5.34) is gauge invariant and could be evaluated as such in lattice regularization, for instance.
As before, we will here restrict to perturbation theory, however. Then gauge invariance needs once
again to be broken, because the quadratic part of LE does otherwise not contain an invertible
matrix M , so that no propagators can be defined. For completeness, let us briefly recall the main
steps of this procedure.

Let Ga be some function(al)s (no longer the Gauss law; the notation has changed!) of the path
integration variables in Eq. (5.34), for instance Ga(x) ≡ Aa3(x) or Ga(x) = −∂µA

a
µ(x). The idea is

to insert the object
∏

x,y,a,b

δ(Ga) det
[δGa(x)

δθb(y)

]

(5.35)

as a multiplier in front of the exponential in Eq. (5.34), in order to “remove the infinities from the
integrations over the gauge orbits”. Indeed, it is easy to see that this insertion does not change
the value of gauge invariant expectation values (of course, in Z it induces an overall constant,
analogous to C). First of all, since LE is gauge invariant, its value does not depend (within each
set of gauge-equivalent configurations) of the particular value selected by the constraint Ga = 0.
Second, let us inspect the integration measure. We can imagine dividing the integration into one
over gauge non-equivalent fields, Āµ, and gauge transformations thereof, parametrized by θ. Then

∫

DAµ δ(G
a) det

[δGa

δθb

]

exp
{

−

∫

x

LE(Aµ)
}

=

=

∫

DĀµ

∫

Dθb δ(Ga) det
[δGa

δθb

]

exp
{

−

∫

x

LE(Āµ)
}

=

∫

DĀµ

∫

DGa δ(Ga) exp
{

−

∫

x

LE(Āµ)
}

=

∫

DĀµ exp
{

−

∫

x

LE(Āµ)
}

. (5.36)

In other words, the dependence on the particular choice of the functions Ga disappears.

It is perhaps appropriate to point out that the somewhat formal manipulations in Eq. (5.36) can
be given a precise meaning in lattice regularization, where the integration measure is defined as
the gauge invariant Haar measure on SU(Nc). Nevertheless, the message remains the same as with
our simplistic argument.

Given that the outcome is independent of Ga, it is conventional and convenient to furthermore
replace δ(Ga) by δ(Ga − fa), where fa is some Aaµ-independent function, and then to take an
average over the fa’s with a Gaussian weight:

δ(Ga) →

∫

Dfa δ(Ga − fa) exp

(

−
1

2ξ

∫

x

fafa
)

= exp

(

−
1

2ξ

∫

x

GaGa
)

. (5.37)

Here an arbitrary parameter, ξ, has been inserted, in order to allow for a check later on that the
results indeed are independent of its value.

Finally, the other structure in Eq. (5.35), the determinant, is conventionally written in terms of
Faddeev-Popov ghosts, by making use of Eq. (4.46):

det(M) =

∫

Dc̄Dc exp
(

−c̄Mc
)

. (5.38)
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It should be noted, however, that since the “matrix” δGa/δθb is purely bosonic, the ghost fields have
to obey the same boundary conditions as the gauge fields, i.e. periodic, in spite of their Grassmann
nature.

In total, then, we can write the gauge-fixed version of Eq. (5.34), adding now also Dirac fermions
to complete the theory into QCD, as

Zphys = C

∫

periodic

DAaµ

∫

periodic

Dc̄aDca
∫

anti-periodic

Dψ̄Dψ ×

× exp

{

−

∫ β

0

dτ

∫

V

ddx

[

1

4
F aµνF

a
µν +

1

2ξ
GaGa + c̄a

(δGa

δθb

)

cb + ψ̄(γ̃µD̃µ +m)ψ

]}

,

(5.39)

where m is the diagonal quark mass matrix.

A particularly convenient gauge choice is that of covariant gauges. Then

Ga ≡ −∂µA
a
µ , (5.40)

1

2ξ
GaGa =

1

2ξ
∂µA

a
µ∂νA

a
ν , (5.41)

δGa

δθb
= +

←−
∂µ
δAaµ
δθb

=
←−
∂µ

[

−→
∂µδ

ab + gfacbAcµ

]

, (5.42)

c̄a
(δGa

δθb

)

cb = ∂µc̄
a∂µc

a + gfabc∂µc̄
aAbµc

c , (5.43)

where we made use of Eqs. (5.2), (5.6).

5.3. Feynman rules for Euclidean continuum QCD

For completeness, we now collect together the Feynman rules that apply to computations with the
theory in Eq. (5.39), when the gauge is fixed according to Eq. (5.40).

Consider first the free (quadratic) part of the Euclidean action. Expressing everything in Fourier
representation, this becomes

SE =
∑

∫

P̃b,Q̃b

δ̄(P̃ + Q̃)

{

1

2
iP̃µÃ

a
ν(P̃ )

[

iQ̃µÃ
a
ν(Q̃)− iQ̃νÃ

a
µ(Q̃)

]

+
1

2ξ
iP̃µÃ

a
µ(P̃ )iQ̃νÃ

a
ν(Q̃)

}

+

+
∑

∫

P̃b,Q̃b

δ̄(−P̃ + Q̃)
[

−iP̃µ˜̄c
a
(P̃ )iQ̃µc̃

a(Q̃)
]

+
∑

∫

P̃f,Q̃f

δ̄(−P̃ + Q̃) ˜̄ψA(P̃ )[iγ̃µQ̃µ +m]ψ̃A(Q̃)

=
∑

∫

P̃b,Q̃b

δ̄(P̃ + Q̃)

{

1

2
Ãaµ(P̃ )Ãaν(Q̃)

[

P̃ 2δµν −
(

1−
1

ξ

)

P̃µP̃ν

]

}

+

+
∑

∫

P̃b,Q̃b

δ̄(−P̃ + Q̃)
[

˜̄c
a
(P̃ )c̃a(Q̃)P̃ 2

]

+
∑

∫

P̃f,Q̃f

δ̄(−P̃ + Q̃) ˜̄ψA(P̃ )[i /̃P +m]ψ̃A(Q̃) . (5.44)

For the quarks, the index A is assumed to comprise both colour and flavour indices, while in the
Dirac space ψ̄ and ψ are treated as vectors.

The propagators are obtained by inverting the matrices in Eq. (5.44):

〈

Ãaµ(P̃ )Ãbν(Q̃)
〉

0
= δab δ̄(P̃ + Q̃)

[

δµν −
P̃µP̃ν

P̃ 2

P̃ 2
+
ξ
P̃µP̃ν

P̃ 2

P̃ 2

]

, (5.45)

〈

c̃a(P̃ )˜̄c
b
(Q̃)

〉

0
= δab δ̄(P̃ − Q̃)

1

P̃ 2
, (5.46)
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〈

ψ̃A(P̃ ) ˜̄ψB(Q̃)
〉

0
= δAB δ̄(P̃ − Q̃)

−i /̃P +m

P̃ 2 +m2
. (5.47)

Finally, we list the interactions. It is convenient to symmetrize these through changes of inte-
gration and summation variables as much as possible. Thereby the three-gluon vertex becomes

S
(AAA)
I =

∫

x

1

2
(∂µA

a
ν − ∂νA

a
µ)gf

abcAbµA
c
ν

=
∑

∫

P̃b,Q̃b,R̃b

1

3!
Ãaµ(P̃ )Ãbν(Q̃)Ãcρ(R̃)δ̄(P̃ + Q̃+ R̃) ×

×igfabc
[

δµρ(P̃ν − R̃ν) + δρν(R̃µ − Q̃µ) + δνµ(Q̃ρ − P̃ρ)
]

. (5.48)

The four-gluon vertex reads

S
(AAAA)
I =

∫

x

1

4
g4fabcfadeAbµA

c
νA

d
µA

e
ν

=
∑

∫

P̃b,Q̃b,R̃b,S̃b

1

4!
Ãaµ(P̃ )Ãbν(Q̃)Ãcρ(R̃)Ãdσ(S̃)δ̄(P̃ + Q̃+ R̃+ S̃)×

× g2
[

feabfecd(δµρδνσ − δµσδνρ) + feacfebd(δµνδρσ − δµσδνρ) + feadfebc(δµνδρσ − δµρδνσ)
]

.

(5.49)

The ghost interaction can be written as

S
(c̄Ac)
I =

∫

x

∂µc
agfabcAbµc

c

=
∑

∫

P̃b,Q̃b,R̃b

˜̄c
a
(P̃ )Ãbµ(Q̃)c̃c(R̃)δ̄(−P̃ + Q̃+ R̃)

(

−igfabcP̃µ

)

. (5.50)

Finally, the fermion interaction is contained in

S
(ψ̄Aψ)
I =

∫

x

ψ̄Aγ̃µ

(

−igT aAB

)

AaµψB

=
∑

∫

P̃f,Q̃b,R̃f

˜̄ψA(P̃ )γ̃µÃ
a
µ(Q̃)ψ̃B(R̃)δ̄(−P̃ + Q̃+ R̃)

(

−igT aAB

)

. (5.51)
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5.4. Exercise 7

(a) Compute the free energy density f(T ) for free gluons (Nc colours) and massless quarks (Nf

flavours), starting from Eq. (5.44).

(b) Deduce from here the result for usual electromagnetic blackbody radiation.

Note that ghosts play a role in both cases!

Solution to Exercise 7

(a) We remember from Eqs. (2.51), (2.80), (4.59), (4.72) that

Jb(0, T ) =
1

2

∑

∫

P̃b

[

ln(P̃ 2)− const.
]

= −
π2T 4

90
, (5.52)

Jf(0, T ) =
1

2

∑

∫

P̃f

[

ln(P̃ 2)− const.
]

=
7

8

π2T 4

90
. (5.53)

We just need to figure out the prefactors of these terms. There will be contributions from
gluons, ghosts and quarks, and we inspect them one at a time.

In the gluonic case, we are faced with the matrix

Mµν = P̃ 2δµν −
(

1−
1

ξ

)

P̃µP̃ν . (5.54)

Let us introduce two further matrices,

PTµν ≡ δµν −
P̃µP̃ν

P̃ 2
, PLµν ≡

P̃µP̃ν

P̃ 2
. (5.55)

As matrices, these satisfy PTPT = PT , PLPL = PL, PTPL = 0, PT + PL = 1. Thereby
PT , PL are projection operators, which implies that their eigenvalues are either zero or unity.
The numbers of the unit eigenvalues can be found by taking the traces from the matrices:
Tr [PT ] = δµµ − 1 = d, Tr [PL] = 1.

We can now write

Mµν = P̃ 2 PTµν +
1

ξ
P̃ 2 PLµν . (5.56)

Thereby M has d eigenvalues P̃ 2 and one P̃ 2/ξ. Also, there are a = 1, . . . , N2
c − 1 copies of

this structure. In total, then,

f(T )|gluons = (N2
c − 1)

{

d×
1

2

∑

∫

P̃b

[

ln(P̃ 2)− const.
]

+
1

2

∑

∫

P̃b

[

ln(
1

ξ
P̃ 2)− const.

]

}

= (N2
c − 1)

{

−
1

2

∑

∫

P̃b

ln(ξ) + (d+ 1)Jb(0, T )

}

. (5.57)

Furthermore, the first term in Eq. (5.57) vanishes in dimensional regularization, because it
does not contain any scales.

For ghosts, the Gaussian integral yields (cf. Eq. (4.46))

∫

∏

a

d˜̄c
a
dc̃a exp(−˜̄c

a
P̃ 2c̃a) =

∏

a

P̃ 2 = exp
{

−
[

−2(N2
c − 1)

1

2
ln(P̃ 2)

]}

. (5.58)
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Furthermore we have to remember that ghosts obey periodic boundary conditions. Thereby

f(T )|ghosts = −2(N2
c − 1)Jb(0, T ) . (5.59)

Finally, quarks work out as in Eq. (4.51), except that they now come in Nc colours and Nf

flavours:
f(T )|quarks = −4NcNfJf(0, T ) . (5.60)

Summing together Eqs. (5.57), (5.59), (5.60), inserting the values from Eqs. (5.52), (5.53),
and setting d = 3, we get

f(T )|QCD = −
π2T 4

90

[

2(N2
c − 1) +

7

2
NfNc

]

. (5.61)

This result is often referred to as the (QCD-version of the) Stefan-Boltzmann law.

It is important to realize (i) that the contribution from the ghosts is essential: according to
Eq. (5.59), it cancels half of the result in Eq. (5.57), thereby yielding the correct number of
physical degrees of freedom as a multiplier in Eq. (5.61); (ii) that the assumption that Aa0 has
only periodic modes also played a role; had it also had antiperiodic ones, Eq. (5.61) would
have obtained a further unphysical term (to be more precise, this statement assumes that
the ghosts remain periodic; it might be possible to compensate for an antiperiodic part of
Aa0 through an antiperiodic part in the ghost determinant, but the setup would then become
rather complicated).

(b) The case of QED is obtained by setting Nc → 1, and N2
c − 1 → 1 [since the group is U(1)

rather than SU(1)]:

f(T )|QED = −
π2T 4

90

[

2 +
7

2
Nf

]

. (5.62)

The factor 2 corresponds to the two photon polarizations; the factor 4, multiplying 7
8 Nf ,

corresponds to a spin- 1
2 particle and a spin- 1

2 antiparticle. If neutrinos were included, they
would only contribute with a factor 2× 7

8 Nf .
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