
5. Gauge fields

As with fermions in Sec. 4.2, our starting point with new kinds of fields is their classical Lagrangian
in Minkowskian spacetime, which for non-Abelian gauge fields reads

LM = −
1

4
F aµνF a

µν , F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (5.1)

where g is the (bare) gauge coupling. Introducing a covariant derivative in the adjoint representa-

tion,
Dac

µ ≡ ∂µδ
ac + gfabcAb

µ , (5.2)

we note for later convenience that F a
µν can be expressed as

F a
µν = ∂µA

a
ν −Dac

ν A
c
µ (= Dac

µ A
c
ν − ∂νA

a
µ) . (5.3)

We can naturally also supplement Eq. (5.1) with matter fields: for instance, letting ψ be a fermion
in the fundamental representation, φ a scalar in the fundamental representation, and Φ a scalar in
the adjoint representation, we could add

δLM = ψ̄(iγµDµ −m)ψ + (Dµφ)†Dµφ+ DacµΦcDbd
µ Φd − V (φ†φ,ΦaΦa) , (5.4)

where Dµ = ∂µ − igAa
µT

a is a covariant derivative in the fundamental representation, and T a are

the Hermitean generators of SU(Nc), satisfying the algebra [T a, T b] = ifabcT c and by convention
normalised as Tr [T aT b] = δab/2.

The construction principle behind Eqs. (5.1), (5.4) is gauge invariance. With U ≡ exp[igθa(x)T a],
the Lagrangian is invariant in the transformations Aµ → A′

µ, ψ → ψ′, φ→ φ′, Φ → Φ′, with

A′
µ ≡ A′a

µ T
a = UAµU

−1 +
i

g
U∂µU

−1 = Aµ + igθa[T a, Aµ] + T a∂µθa + O(θ2) (5.5)

⇔ A′a
µ = Aa

µ + Dac
µ θ

c + O(θ2) , (5.6)

ψ′ = Uψ = (1+ igθaT a)ψ + O(θ2) , (5.7)

φ′ = Uφ = (1+ igθaT a)φ+ O(θ2) , (5.8)

Φ′ ≡ Φ′aT a = UΦU−1 = Φ + igθa[T a,Φ] + O(θ2) (5.9)

⇔ Φ′a = Φa + gfabcΦbθc + O(θ2) . (5.10)

We would now like to quantise the theory in Eqs. (5.1), (5.4). At this point, the role of gauge
invariance becomes rather convoluted, however. We may remember that:

• The classical theory is constructed by insisting on gauge invariance.

• Canonical quantization and the derivation of the Euclidean path integral necessitate an ex-
plicit breaking of gauge invariance.

• The final Euclidean path integral itself again displays gauge invariance.

• Yet carrying out perturbation theory with the Euclidean path integral necessitates once again
an explicit breaking of gauge invariance.

• Nevertheless, only gauge invariant observables are considered to be physical.

So, conceptually, it is not a completely transparent setting!
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In fact, as far as canonical quantization and the derivation of the Euclidean path integral are
concerned, there are two procedures followed in the literature. The idea of the most common one is
to carry out a complete gauge fixing (going to the axial gauge Aa

3 = 0), identifying physical degrees
of freedom (Aa

1 , A
a
2 and the corresponding canonical momenta; Aa

0 is expressed in terms of these
by imposing a further constraint, the Gauss law); and then following the quantization procedure
of scalar field theory.

We will here follow another approach, where the idea is to do as little gauge fixing as possible;
the price to pay is that then one has to be careful about the states over which the physical Hilbert
space is constructed6. The advantage of the approach is that the role of gauge invariance remains
less compromised during quantization; if the evaluation of the resulting Euclidean path integral
were also to be carried out non-perturbatively (within lattice regularization, for instance), then it
would perhaps become clearer why only gauge invariant observables are physical.

5.1. Path integral for the partition function

For simplicity, let us restrict to Eq. (5.1) in the following. For canonical quantization, the first
step is to construct the Hamiltonian. We will do this after setting

Aa
0 ≡ 0 , (5.11)

which fixes the gauge only partially (according to Eq. (5.6), time-independent gauge transforma-
tions are still allowed, since Aa

0 remains zero in them). In some sense, the philosophy is to break
gauge invariance only to the same “soft” degree that Lorentz invariance is also broken in the
canonical formulation, through the special role that is given to the time coordinate.

The spatial components Aa
i are treated as the canonical coordinates. According to Eq. (5.3),

F a
0i = ∂0A

a
i , and Eq. (5.1) becomes

LM =
1

2
∂0A

a
i ∂0A

a
i −

1

4
F a

ijF
a
ij . (5.12)

The canonical momenta corresponding to Aa
i , to be denoted by Ea

i , are

Ea
i ≡

∂LM

∂(∂0Aa
i )

= ∂0A
a
i , (5.13)

and the Hamiltonian density reads

H = Ea
i ∂0A

a
i − LM =

1

2
Ea

i E
a
i +

1

4
F a

ijF
a
ij . (5.14)

We also note that the “multiplier” of Aa
0 (before gauge fixing) reads, according to Eq. (5.3),

δSM

δAa
0

=
δ

δAa
0

∫

x

[
1

2
(∂0A

b
i −Dbc

i A
c
0)F

b
0i

]

= Dab
i F

b
0i , (5.15)

where we made use of ∫

x

fa(x)Dab
µ gb(x) = −

∫

x

ga(x)Dab
µ f b(x) . (5.16)

The object in Eq. (5.15), the left-hand side of the Gauss law, will play an important role later on.

The theory is now canonically quantized by making Aa
i and Ea

i into operators, and by imposing
the standard bosonic equal-time commutation relations between them,

[Âa
i (t,x), Êb

j (t,y)] = iδabδijδ(x − y) . (5.17)

6This approach dates back to C.W. Bernard, Feynman Rules for Gauge Theories at Finite Temperature, Phys.
Rev. D 9 (1974) 3312, and particularly D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and Instantons at Finite

Temperature, Rev. Mod. Phys. 53 (1981) 43.
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The Hamiltonian becomes

Ĥ =

∫

ddx

(
1

2
Êa

i Ê
a
i +

1

4
F̂ a

ij F̂
a
ij

)

. (5.18)

A very important role in the quantization will be played by what we call the Gauss law operators.
Combining Eq. (5.15) and F b

0i = ∂0A
b
i = Eb

i , we write these as

Ĝa = D̂ab
i Ê

b
i , a = 1, . . . , N2

c − 1 . (5.19)

Furthermore we define an operator parametrized by time-independent gauge transformations,

Û ≡ exp
{

−i

∫

ddx θa(x)Ĝa(x)
}

. (5.20)

We now claim that Û generates gauge transformations. Let us prove this to leading non-trivial
order in θa. First of all,

Û Âb
j(y)Û−1 = Âb

j(y) − i

∫

ddx θa(x)[Ĝa(x), Âb
j(y)] + O(θ2)

= Âb
j(y) − i

∫
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{
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i [Êa
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j(y)] + gfacdÂc
i (x)[Êd

i (x), Âb
j(y)]

}

+ O(θ2)

= Âb
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∫

ddx θa(x)
{

∂x

i δ
abδijδ(x − y) + gfacdÂc

i (x)δdbδijδ(x − y)
}

+ O(θ2)

= Âb
j(y) + ∂jθ

b(y) + gf bcaÂc
i (y)θa(y) + O(θ2)

= Âb
j(y) + D̂ba

j θ
a(y) + O(θ2) = Â′b

j (y) , (5.21)

where in the last step we used Eq. (5.6). Similarly,

Û Êb
j (y)Û−1 = Êb

j (y) − i

∫

ddx θa(x)[Ĝa(x), Êb
j (y)] + O(θ2)

= Êb
j (y) − i

∫

ddx θa(x)
{

+gfacd[Âc
i (x), Êb

j (y)]Êd
i (x)

}

+ O(θ2)

= Êb
j (y) +

∫

ddx θa(x)gfacdδcbδijδ(x − y)Êd
i (x) + O(θ2)

= Êb
j (y) + gf bdaÊd

j (y)θa(y) = Ê′b
j (y) + O(θ2) , (5.22)

where we have identified the transformation law of an adjoint scalar according to Eq. (5.10).

One important consequence of Eqs. (5.21), (5.22) is that the operators Ĝa commute with the

Hamiltonian Ĥ . This follows from the fact that the Hamiltonian in Eq. (5.18) is gauge-invariant
in time-independent gauge transformations (if Êa

i transforms as an adjoint scalar):

ÛĤÛ−1 = Ĥ ⇒ [Ĝa, Ĥ ] = 0 . (5.23)

Another important consequence is that Û transforms eigenstates as well: if Âa
i |A

a
i 〉 = Aa

i |A
a
i 〉, then

Âa
i Û

−1|Aa
i 〉 = Û−1Â′a

i |Aa
i 〉 = Û−1A′a

i |Aa
i 〉 = A′a

i Û
−1|Aa

i 〉 , (5.24)

where we made use of Eq. (5.21). Consequently,

Û−1|Aa
i 〉 = |A′a

i 〉 . (5.25)

Let us now define a physical state, |phys〉, to be one which is gauge-invariant: Û−1|phys〉 = |phys〉.
Expanding to first order in θa, we see that physical states must satisfy

Ĝa|phys〉 = 0 . (5.26)
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This is an operator manifestation of the statement that physical states must obey the Gauss law.

To summarise: since the Hamiltonian commutes with Ĝa, we can choose the basis vectors of the
Hilbert space to be simultaneous eigenstates of Ĥ and Ĝa. Among all of these states, only the
ones with zero eigenvalue of Ĝa are physical. It is then only these states which are to be used in
the evaluation of Z = Tr [exp(−βĤ)], for instance.

After all these preparations, we are finally in a position to derive a path integral expression for
Z. In terms of basic quantum mechanics, we have a system with a Hamiltonian Ĥ and with a
commuting quantity, Q̂ (whose role is played by Ĝa). One could consider the grand canonical
partition function Z(T, µ) = Tr {exp[−β(Ĥ − µQ̂)]} but, according to what we have said, we are
only interested in the contribution to Z from the states with zero “charge”, Q̂|phys〉 = 0. Assuming
for concreteness that the eigenvalues q of Q̂ are integers, we label the states with the eigenvalues
Eq, q, so that Ĥ|Eq, q〉 = Eq|Eq, q〉, Q̂|Eq, q〉 = q|Eq , q〉. We can now write the relevant partition
function by taking a trace over all states, but inserting a Kronecker delta function inside the trace:

Zphys ≡
∑

E0

〈E0, 0|e
βE0|E0, 0〉 =

∑

Eq,q

〈Eq , q|δq,0e
βEq |Eq, q〉 = Tr

[

δQ̂,0̂e
−βĤ

]

. (5.27)

Since δQ̂,0̂ = δQ̂,0̂δQ̂,0̂ and [Ĥ, Q̂] = 0, we can finally write

Zphys = Tr
[

δQ̂,0̂e
−ǫĤδQ̂,0̂e

−ǫĤ . . . δQ̂,0̂e
−ǫĤ

︸ ︷︷ ︸

N parts

]

, (5.28)

where ǫ = β/N , N → ∞ as before. We may represent

δQ̂,0̂ =

∫ π

−π

dθi

2π
eiθiQ̂ =

∫ π/ǫ

−π/ǫ

dci
2πǫ−1

eiǫciQ̂ , (5.29)

and insert unity operators as in Eq. (1.34), but now the momentum state representation is placed
between δQ̂,0̂ and exp(−ǫĤ). The typical building block then reads

〈xi+1|e
iǫciQ̂(x̂,p̂)|pi〉〈pi|e

−ǫĤ(p̂,x̂)|xi〉

= exp

{

−ǫ

[

−iciQ(xi+1, pi) +
p2

i

2m
− ipi

xi+1 − xi

ǫ
+ V (xi) + O(ǫ)

]}

. (5.30)

It remains to: (i) take the limit ǫ → 0, whereby xi, pi, ci become functions, x(τ), p(τ), c(τ); (ii)
go from d = 0 to a general dimension; (iii) replace x(τ) → Aa

i (x), p(τ) → Ea
i (x), c(τ) → Ãa

0(x),
Q→ Dab

i E
b
i , m→ 1. Then the integral over the square brackets in Eq. (5.30) becomes

∫

x
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−iÃa
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b
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1
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a
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a
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a
i +

1

4
F a

ijF
a
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=

∫

x

[
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2
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a
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a
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(

∂τA
a
i −Dab

i Ã
b
0

)

+
1

4
F a

ijF
a
ij

]

,

(5.31)
where we made use of Eq. (5.16).

At this point we recognize inside the round brackets in Eq. (5.31) an expression of the form in
Eq. (5.3). Of course, the field Ãa

0 is not the original Aa
0-field, which was set to zero. Rather, it is

a new field, which we are however free to rename to be Aa
0 . Indeed, in the following we leave out

the tilde from Ãa
0 , and redefine a Euclidean field strength tensor according to

F a
0i ≡ ∂τA

a
i −Dab

i Ã
b
0 . (5.32)

Noting furthermore that

1

2
Ea

i E
a
i − iEa

i F
a
0i =

1

2
(Ea

i − iF a
0i)

2 +
1

2
F a

0iF
a
0i , (5.33)
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we can carry out the Gaussian intergral over Ea
i , and end up with the desired path integral

expression:

Zphys = C

∫

DAa
0

∫

Aa
i
(β,x)=Aa

i
(0,x)

DAa
i exp

{

−

∫ β

0

dτ

∫

V

ddxLE

}

, LE =
1

4
F a

µνF
a
µν . (5.34)

Two remarks are in order on the final result in Eq. (5.34):

(i) The field Aa
0 was introduce in order to impose the Gauss law at every value of τ ; therefore,

the integrations at each τ are independent of each other. In other words, it is not obvious
from the derivation of the path integral whether the field Aa

0 should satisfy periodic boundary
conditions like the spatial components Aa

i do.

Now, any field defined on a compact interval τ ∈ (0, β) can be expressed as a sum of a
periodic and an anti-periodic function: Aa

0(τ) = 1
2 [Aa

0(τ)+A
a
0(β−τ)]+ 1

2 [Aa
0(τ)−A

a
0(β−τ)].

The periodic part is what we would expect, and the question then is, what happens with
the antiperiodic part? Note that this part could be Fourier-decomposed with fermionic
Matsubara frequencies.

For the moment the answer does not seem obvious, but we will see in Exercise 7 that indeed
only a periodic Aa

0(τ) leads to physical results.

(ii) For scalar field theory and fermions, Eqs. (2.7), (4.34), we found after a careful derivation of
the Euclidean path integral that the result could be interpreted in terms of a simple recipe:
LE = −LM (t→ −iτ). We may now ask whether the same is true for gauge fields as well?

A comparison of Eqs. (5.1), (5.34) shows that, indeed, the recipe again works; the only
complication is that the Minkowskian Aa

0 needs to be replaced with iÃa
0 (of which we have

normally left out the tilde), just like ∂t gets replaced with i∂τ . This, of course, should be
expected from gauge invariance, since covariant derivatives need to change as Dt → iDτ .
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