
According to Eq. (4.28), these satisfy the algebra

{γ̃µ, γ̃ν} = 2δµν , γ̃†µ = γ̃µ . (4.36)

We also define
∂̃0 ≡ ∂τ , ∂̃i ≡ ∂i . (4.37)

Thereby Eq. (4.34) can be written in the simple form

LE = ψ̄[γ̃µ∂̃µ +m]ψ , (4.38)

and the partition function becomes

Z =

∫

ψ̄(β,x)=−ψ̄(0,x)

ψ(β,x)=−ψ(0,x)

Dψ̄(τ,x)Dψ(τ,x) exp

{

−

∫ β

0

dτ

∫

ddxLE

}

, (4.39)

where we have substituted integration variables from ψ† to ψ̄, and set again ~ → 1. It is important
to keep in mind that in the path integral formulation, ψ and ψ̄ are independent integration variables.

In order to evaluate Z, it is useful to go to Fourier space, like with the scalar fields. We write

ψ(x) ≡
∑
∫

P̃

eiP̃ ·xψ̃(P̃ ) , ψ̄(x) ≡
∑
∫

P̃

e−iP̃ ·x ˜̄ψ(P̃ ) . (4.40)

The anti-periodicity in Eq. (4.39) requires that P̃ be of the form

P̃ = (ωf
n,p) , eiω

f
n
β = −1 , (4.41)

whereby the fermionic Matsubara frequencies become

ωf
n = 2πT

(

n+
1

2

)

, n ∈ Z , (4.42)

i.e. ωf
n = ±πT,±3πT, ... . Note that anti-periodicity removes the Matsubara zero-mode from the

spectrum. Correspondingly, recalling the discussion in Sec. 3.8, it is clear that there are no infrared

problems associated with fermions!

In the Fourier representation, the exponent in Eq. (4.39) becomes

SE ≡

∫ β

0

dτ

∫

ddx ψ̄(x)[γ̃µ∂̃µ +m]ψ(x)

=

∫

x

∑
∫

P̃f

∑
∫

Q̃f

ei(P̃−Q̃)·x ˜̄ψ(Q̃)[iγ̃µP̃µ +m]ψ̃(P̃ )

=
∑
∫

P̃f

˜̄ψ(P̃ )[i /̃P +m]ψ̃(P̃ ) , (4.43)

where we made use of Eq. (3.23), and defined /̃P ≡ γ̃µP̃µ. In contrast to real scalar fields, all Fourier
modes are independent. Up to a constant, we can then also change the integration variables in
Eq. (4.39) to be the Fourier modes. Furthermore, we note that

∫

dc∗dc e−c
∗ac =

∫

dc∗dc [−c∗ac] = a , (4.44)

∫
dc∗dc c c∗ e−c

∗ac

∫
dc∗dc e−c∗ac

=

∫
dc∗dc c c∗

∫
dc∗dc [−c∗ac]

=
1

a
, (4.45)
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and recall that the generalizations to a multicomponent case read

∫ {∏

i

dc∗i dci

}

exp
(

−c∗iMijcj

)

= det(M) , (4.46)

∫ {∏

i dc
∗
i dci

}
ckc

∗
l exp

(

−c∗iMijcj

)

∫ {∏

i dc
∗
i dci

}
exp

(

−c∗iMijcj

) = (M−1)kl . (4.47)

Armoured with this knowledge, we can now work out the partition function Z, as well as the
propagator, which is needed for computing perturbative corrections to the partition function. From
Eqs. (4.39), (4.43), (4.46),

Z = C̃
∏

P̃f

det[i /̃P +m]

= C̃
(∏

P̃f

det[i /̃P +m]
∏

P̃f

det[−i /̃P +m]
) 1

2

, (4.48)

where C̃ is some constant, and have we “replicated” the determinant and compensated for that by
taking the square root. The reason for the replication is that

[i /̃P +m][−i /̃P +m] = /̃P /̃P +m2 = (P̃ 2 +m2)14×4 , (4.49)

where we made use of Eq. (4.36). Thereby

Z = C̃
(∏

P̃f

det[(P̃ 2 +m2)14×4]
) 1

2

= C̃
∏

P̃f

(P̃ 2 +m2)2 , (4.50)

and the free energy density f(T ) becomes

f(T ) = lim
V→∞

F

V
= lim
V→∞

(

−
T

V
lnZ

)

= − lim
V→∞

T

V
× 2

∑

P̃f

ln(P̃ 2 +m2) + const.

= −4
∑
∫

P̃f

1

2
ln(P̃ 2 +m2) + const. , (4.51)

where we identified the sum-integration measure from Eqs. (2.9), (2.55).

The following remarks are in order:

• the sum-integral appearing in Eq. (4.51) is similar to the bosonic one in Eq. (2.51), but
is preceded by a minus-sign, and contains fermionic Matsubara frequencies. These are the
characteristic properties of fermions.

• the factor 4 in Eq. (4.51) corresponds to the independent spin degrees of freedom contained
in a Dirac spinor.

• like for the scalar field theory in Eq. (2.51) (or Eq. (2.24)), there is a constant part in the
sum, independent of the energy (or mass). We will not specify it explicitly here; rather, there
will be an implicit specification in Sec. 4.3, where we relate generic fermionic thermal sums
to the already known bosonic ones.
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Finally, from Eqs. (4.43), (4.47), we find the propagator:

〈ψ̃α(P̃ ) ˜̄ψβ(Q̃)〉0 =δ̄(P̃ − Q̃)[i /̃P +m1]−1
αβ =δ̄(P̃ − Q̃)

[−i /̃P +m1]αβ

P̃ 2 +m2
. (4.52)

Once interactions are added, they can be reduced to a product of propagators with the Wick
theorem in the same way as in Sec. 3.2 (remembering, though, that the Grassmann nature of the
Dirac fields produces a minus-sign in every commutation). Finally, we reiterate that takingm2 → 0
in Eq. (4.52) does not lead to any divergences, because the denominator of a fermion propagator
can never vanish at finite temperature (cf. Eq. (4.42)), unlike that of a boson.

4.3. Fermionic thermal sums

Let us now consider the same problem as in Sec. 2.3, but with fermionic Matsubara frequencies:

Sf ≡ T
∑

ωf
n

f(ωn) . (4.53)

For clarity we also denote the sum in Eq. (2.29) by Sb from now on. We can write:

Sf(T ) = T [...+ f(−3πT ) + f(−πT ) + f(πT ) + ...]

= T [...+ f(−3πT ) + f(−2πT ) + f(−πT ) + f(0) + f(πT ) + f(2πT ) + ...]

−T [...+ f(−2πT ) + f(0) + f(2πT ) + ...]

= 2 ×
T

2

[

...+ f
(

−6π
T

2

)

+ f
(

−4π
T

2

)

+ f
(

−2π
T

2

)

+ f
(
0
)

+ f
(

2π
T

2

)

+ f
(

4π
T

2

)

+ ...
]

−T [...+ f(−2πT ) + f(0) + f(2πT ) + ...]

= 2Sb

(T

2

)

− Sb(T ) . (4.54)

Thereby all fermionic sums follow from the known bosonic ones!

To give an example, consider Eq. (2.34),

Sb(T ) =

∫ +∞

−∞

dp

2π
f(p) +

∫ +∞−i0+

−∞−i0+

dp

2π
[f(p) + f(−p)]nB(ip) . (4.55)

Eq. (4.54) now implies

Sf(T ) =

∫ +∞

−∞

dp

2π
f(p) +

∫ +∞−i0+

−∞−i0+

dp

2π
[f(p) + f(−p)]

[

2n
(T/2)
B (ip) − n

(T )
B (ip)

]

. (4.56)

Thereby the zero-temperature part remains unchanged, while the finite-temperature part has the
new weight

2n
(T/2)
B (ip) − n

(T )
B (ip) =

2

exp(2ipβ) − 1
−

1

exp(ipβ) − 1

=
1

exp(ipβ) − 1

[
2

exp(ipβ) + 1
− 1

]

=
1 − exp(ipβ)

[exp(ipβ) − 1][exp(ipβ) + 1]

= −n
(T )
F (ip) , (4.57)

where nF(p) ≡ 1/[exp(βp) + 1] is the Fermi-Dirac distribution function. In total, then, fermionic
sums can be converted to integrals according to

Sf(T ) =

∫ +∞

−∞

dp

2π
f(p) −

∫ +∞−i0+

−∞−i0+

dp

2π
[f(p) + f(−p)]nF(ip) . (4.58)
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4.4. Exercise 6

(a) Defining

Jf(m,T ) =
1

2

∑
∫

P̃f

[

ln(P̃ 2 +m2) − const.
]

, (4.59)

If(m,T ) =
∑
∫

P̃f

1

P̃ 2 +m2
, (4.60)

and writing
Jf(m,T ) = J0(m) + J f

T (m) , If(m,T ) = I0(m) + I f
T (m) , (4.61)

find the general expressions for J f
T (m), I f

T (m).

(b) Derive the low-temperature and the high-temperature expansions for J f
T (m), I f

T (m). Note
the absence of odd powers of m in the high-temperature expansions.

(c) Consider the fermionic version of Eq. (1.83),

Gf(τ) ≡ T
∑

ωf
n

eiωnτ

ω2
n + ω2

, 0 < τ < β . (4.62)

What is the explicit expression for Gf(τ)?

Solution to Exercise 6

(a) We proceed according to Eq. (4.54). From Eq. (2.50),

Jb
T (m) =

∫

k

T ln
(

1 − e−βEk

)

, (4.63)

so that

J f
T (m) =

∫

k

T
[

ln
(

1 − e−2βEk

)

− ln
(

1 − e−βEk

)]

=

∫

k

T ln
(

1 + e−βEk

)

. (4.64)

From Eq. (2.53),

Ib
T (m) =

∫

k

1

Ek

nB(Ek) , (4.65)

and then the same steps as in Eq. (4.57) lead to

I f
T (m) = −

∫

k

1

Ek

nF(Ek) . (4.66)

(b) From Eq. (2.78), the low-temperature expansion for Jb
T reads

Jb
T (m) ≈ −T 4

(
m

2πT

) 3
2

e−
m

T . (4.67)

In Eq. (4.54), the first term is exponentially suppressed, and thus

J f
T (m) ≈ T 4

(
m

2πT

) 3
2

e−
m

T . (4.68)
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From Eq. (2.79), the low-temperature expansion for Ib
T reads

Ib
T (m) ≈

T 3

m

(
m

2πT

) 3
2

e−
m

T . (4.69)

Again the first term in Eq. (4.54) is exponentially suppressed, so that

I f
T (m) ≈ −

T 3

m

(
m

2πT

) 3
2

e−
m

T . (4.70)

From Eq. (2.81), the high-temperature expansion for Jb
T reads

Jb
T (m) = −

π2T 4

90
+
m2T 2

24
−
m3T

12π
−

m4

2(4π)2

[

ln

(
meγE

4πT

)

−
3

4

]

+
m6ζ(3)

3(4π)4T 2
+ ... . (4.71)

According to Eq. (4.54), we then get

J f
T (m) = −

1

8

π2T 4

90
+

1

2

m2T 2

24
−
m3T

12π
− 2

m4

2(4π)2

[

ln

(
meγE

4πT

)

−
3

4
+ ln 2

]

+
8m6ζ(3)

3(4π)4T 2

+
π2T 4

90
−
m2T 2

24
+
m3T

12π
+

m4

2(4π)2

[

ln

(
meγE

4πT

)

−
3

4

]

−
m6ζ(3)

3(4π)4T 2
− ...

=
7

8

π2T 4

90
−
m2T 2

48
−

m4

2(4π)2

[

ln

(
meγE

πT

)

−
3

4

]

+
7m6ζ(3)

3(4π)4T 2
+ ... . (4.72)

We note that the cubic term indeed disappears from the difference. Finally, from Eq. (2.92),
the high-temperature expansion for Ib

T reads

Ib
T (m) =

T 2

12
−
mT

4π
−

2m2

(4π)2

[

ln

(
meγE

4πT

)

−
1

2

]

+
2m4ζ(3)

(4π)4T 2
+ ... , (4.73)

and Eq. (4.54) then yields

I f
T (m) =

1

2

T 2

12
−
mT

4π
−

4m2

(4π)2

[

ln

(
meγE

4πT

)

−
1

2
+ ln 2

]

+
16m4ζ(3)

(4π)4T 2

−
T 2

12
+
mT

4π
+

2m2

(4π)2

[

ln

(
meγE

4πT

)

−
1

2

]

−
2m4ζ(3)

(4π)4T 2
+ ...

= −
T 2

24
−

2m2

(4π)2

[

ln

(
meγE

πT

)

−
1

2

]

+
14m4ζ(3)

(4π)4T 2
+ ... . (4.74)

Again, the term odd in m has disappeared from the result.

(c) According to Eq. (1.88),

Gb(τ) = T
∑

ωb
n

eiωnτ

ω2
n + ω2

=
1

2ω

cosh
[(

β
2 − τ

)

ω
]

sinh
[
βω
2

]

=
1

2ω

e(β−τ)ω + eτω

eβω − 1
=

1

2ω
nB(ω)

[

e(β−τ)ω + eτω
]

. (4.75)

Employing Eq. (4.54), we get

Gf(τ) =
1

2ω

{
2

e2βω − 1

[

e(2β−τ)ω + eτω
]

−
1

eβω − 1

[

e(β−τ)ω + eτω
]}

=
1

2ω

1

(eβω − 1)(eβω + 1)

{

2e(2β−τ)ω + 2eτω − (eβω + 1)
[

e(β−τ)ω + eτω
]}

︸ ︷︷ ︸

(eβω − 1)
[

e(β−τ)ω − eτω
]

=
1

2ω
nF(ω)

[

e(β−τ)ω − eτω
]

. (4.76)
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