
3.8. Proper free energy density to O(λ
3

2 ): infrared resummation

We now consider the limit mphys → 0, as would be the case (in perturbation theory) for, say,
gluons in QCD. According to Eq. (3.80), this corresponds to mB → 0, since I0(0) = 0 according
to Eq. (2.73). Then we are faced with the infrared problem introduced in Sec. 3.5.

In the limit of a small mass, we can employ high-temperature expansions for the functions
J(m, T ), I(m, T ), given in Eqs. (2.91), (2.94). Employing Eqs. (3.45), (3.55), we write the leading
terms in the small-mB expansion as

O(λ0
B) : f(0)(T ) = J(mB, T ) = −

π2T 4

90
+

m2
BT 2

24
−

m3
BT

12π
+ O(m4

B) , (3.88)

O(λ1
B) : f(1)(T ) =

3

4
λB [I(mB, T )]2

=
3

4
λB

[
T 2

12
−

mBT

4π
+ O(m2

B)

]2

=
3

4
λB

[
T 4

144
−

mBT 3

24π
+ O(m2

BT 2)

]

, (3.89)

O(λ2
B) : f(2)(T ) = −

9

4
λ2

B

T 4

144

T

8πmB
+ O(m0

B) . (3.90)

Let us inspect, in particular, odd powers of mB. As is obvious from Eqs. (3.88)–(3.90), they are
becoming increasingly important as we go further in the expansion. We remember from Sec. 2.6
that odd powers of mB are necessarily associated with contributions from the Matsubara zero-
modes. In fact, the odd power in Eq. (3.88) is directly the zero-mode contribution from Eq. (2.86),

δoddf(0) = J (n=0) = −
m3

BT

12π
. (3.91)

The odd power in Eq. (3.89) comes from a cross-term between the zero-mode contribution and the
leading non-zero mode contribution:

δoddf(1) =
3

2
λB × I ′(0, T )× I(n=0) = −

λBmBT 3

32π
. (3.92)

Finally, the divergence in Eq. (3.90) comes from a product of two non-zero mode contributions
with a particularly infrared sensitive zero-mode contribution:

δoddf(2) =
9

4
λ2

B × [I ′(0, T )]2 ×
dI(n=0)

dm2
B

= −
λ2

BT 5

83πmB
. (3.93)

Comparing these structures, we immediately see that the expansion parameter related to the odd
powers is

δoddf(1)

δoddf(0)
∼

δoddf(2)

δoddf(1)
∼

λBT 2

8m2
B

. (3.94)

Thus, if we try to take m2
B → 0 (or even just m2

B ≪ λBT 2), the loop expansion breaks down.

In order to cure this problem, our only hope is to identify and sum the corresponding divergent

terms to all orders. We may then expect that the complete sum has a form where we can take m2
B →

0, without meeting any more divergences. This procedure is often referred to as resummation.

Fortunately, it is indeed possible to identify the problematic terms. Eqs. (3.91)–(3.93) already
show that at order N in λB , they are associated with terms containing N non-zero mode contri-
butions I ′(0, T ), and one zero-mode contribution. Graphically, this corresponds to a loop with one
zero-mode line, dressed with N non-zero mode “bubbles”. Such graphs are usually called “ring
diagrams” or, adopting botanistic terminology, “daisy” diagrams.
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To be more quantitative, we consider Eq. (3.56) at order λN
B :

f(T ) =
〈

SI −
1

2
S2

I + . . . +
(−1)N+1

N !
SN

I

〉

0,connected,drop overall
R

x

(3.95)

⇒
(−1)N+1

N !

(
λB

4

)N
〈

φ φ φ φ φ φ φ φ φ φ φφ · · · φ φ φ φ

6 6 6 6

2(N − 1) 2(N − 2)

〉

0,...

=
(−1)N+1

N !

(
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4
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6N [2(N − 1)][2(N − 2)]...[2]
︸ ︷︷ ︸
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T 2

12
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]N

T

∫
ddp

(2π)d

(
1
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)N

︸ ︷︷ ︸

.

2N−1(N − 1)! I ′(0, T ) zero-mode ring

Let us compute the zero-mode part (for simplicity we omit terms of O(ǫ)):

N = 1 :

∫
d3−2ǫp

(2π)3−2ǫ

1
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B

= −
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4π
=

d

dm2
B

(

−
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B
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)

,

N = 2 :
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B)2
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d
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,

generally :
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)
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)(
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(
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)N(
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6π
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. (3.96)

Combining Eqs. (3.95), (3.96), we get

δoddf(N) =
(−1)N+1

N !

(
3λB
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)N

2N−1(N − 1)!

(
T 2
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)N

T
(−1)N

(N − 1)!

(
d
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)N(
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)
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(
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. (3.97)

As a crosscheck, it can easily be verified that this expression reproduces the explicit results for
N = 0, 1, 2 shown in Eqs. (3.91)–(3.93).

Now, thanks to the fact that Eq. (3.97) has precisely the right structure to correspond to a
Taylor-expansion, we can sum the contributions in Eq. (3.97) to all orders:

∞∑

N=0

1

N !

(
λBT 2

4

)N(
d

dm2
B

)N(

−
m3

BT

12π

)

= −
T

12π

(

m2
B +

λBT 2

4

) 3

2

. (3.98)

A miracle has happened: from Eq. (3.98), the limit m2
B → 0 can be taken without divergences! But

there is a surprise: we get a contribution of O(λ
3/2
B ), rather than O(λ2

B) as we naively expected
in Sec. 3.5. In other words, infrared divergences in finite-temperature field theory modify even
qualitatively the structure of the weak-coupling expansion.

Setting finally m2
B → 0, and collecting all the finite terms from Eqs. (3.88)–(3.90), we find the

correct expansion of f(T ) in the massless limit:

f(T ) = −
π2T 4

90
−

T

12π

(
λBT 2

4

)3/2

+
λBT 4

4 × 48
+ O(λ2

BT 4) (3.99)

= −
π2T 4

90

[

1 −
15

32

λR

π2
+

15

16

(
λR

π2

) 3

2

+ O(λ2
R)

]

. (3.100)
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Here we have inserted λB = λR + O(λ2
R). Eq. (3.100) is our final result.

It is perhaps appropriate to add that despite the complications that we have found, higher
order terms can also be added to Eq. (3.100). In fact, as of today (fall 2007), the coefficients

of the five subsequent terms, of orders O(λ2
R), O(λ

5/2
R lnλR), O(λ

5/2
R ), O(λ3

R lnλR), and O(λ3
R),

are also known.5 This progress is possible due to the fact that the resummation of higher order
contributions that we have carried out explicitly in this section, can be implemented much more
elegantly and systematically with so-called effective field theory methods. We return to the general
procedure in later sections, but some flavour of the idea can perhaps be obtained by organizing
the computation in yet another way, outlined in Exercise 5.

3.9. Exercise 5

(a) Following the zero-temperature computation of m2
phys in Eq. (3.79), repeat the determination

of the pole mass at T 6= 0, mB → 0. The result can be called the thermal mass term, m2
eff.

(b) Argue that in the weak-coupling limit (λR ≪ 1), the thermal mass term is important only
for the Matsubara zero mode.

(c) Let us write the Lagrangian for m2
B = 0 as

LE =
1

2
∂µφ∂µφ +

1

2
m2

effφ2
n=0

︸ ︷︷ ︸

+
1

4
λBφ4 −

1

2
m2

effφ2
n=0

︸ ︷︷ ︸

. (3.101)

L0 LI

Treating L0 as the free theory, and LI as an interaction of order λR, write down the contri-
butions to f(0) and f(1). Check that once the computation is reorganized this way, the series
is well-behaved, and the result agrees with what we got in Eq. (3.99).

Solution to Exercise 5

(a) The computation proceeds precisely like the one leading to Eq. (3.79), with the replacement
∫

P̃
→

∫

P̃Σ . Consequently,

m2
eff = lim

m2

B
→0

[

m2
B + 3λBI(mB, T )

]

= 3λBI(0, T ) =
λRT 2

4
+ O(λ2

R) . (3.102)

(b) For the non-zero Matsubara modes, with ωn 6= 0, we note that λRT 2/4 ≪ ω2
n, so that

the thermal mass term plays a subdominant role in the propagator. In contrast, for the
Matsubara zero-mode, m2

eff modifies the propagator significantly for p2 ≪ m2
eff, removing

any infrared divergences.

(c) The free propagators are now different for the Matsubara zero-modes and non-zero modes:

〈φ̃′(P̃ )φ̃′(Q̃)〉0 = δ̄(P̃ + Q̃)
1

ω2
n + p2

, (3.103)

〈φ̃n=0(P̃ )φ̃n=0(Q̃)〉0 = δ̄(P̃ + Q̃)
1

p2 + m2
eff

. (3.104)

Eq. (3.16) gets replaced with

f(0)(T ) =
∑
∫

′

P̃

1

2
ln(P̃ 2) + T

∫

p

1

2
ln(p2 + m2

eff) − const.

5A. Gynther, M. Laine, Y. Schröder, C. Torrero and A. Vuorinen, Four-loop pressure of massless O(N) scalar
field theory, JHEP 04 (2007) 094 [arXiv:hep-ph/0703307].
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= J ′(0, T ) + J (n=0)(meff, T )

= −
π2T 4

90
−

m3
effT

12π
. (3.105)

Eq. (3.17) now contains the two terms of the LI in Eq. (3.101), and Eq. (3.18) becomes

f(1)(T ) =
3

4
λB〈φ(0)φ(0)〉0〈φ(0)φ(0)〉0 −

1

2
m2

eff〈φn=0(0)φn=0(0)〉0

=
3

4
λB

[

I ′(0, T ) + I(n=0)(meff, T )
]2

−
1

2
m2

effI(n=0)(meff, T )

=
3

4
λB

[
T 4

144
−

meffT 3

24π
+

m2
effT 2

16π2

]

+
1

2
m2

eff

meffT

4π
. (3.106)

Inserting Eq. (3.102) into the last term, we see that this contribution precisely cancels the
“large” linear term within the square brackets. As we recall from Eq. (3.92), the linear term
was part of the problematic series that needed to be resummed; hence the problematic series
does not get generated at all with the present reorganization,

Combining Eqs. (3.105), (3.106), we then get

f(T ) = −
π2T 4

90
+

3

4
λR

T 4

144
−

m3
effT

12π
+ O(λ2

R) . (3.107)

which exactly agrees with Eq. (3.99).

The cancellation that took place in Eq. (3.106) can also be verified at higher orders. In
particular, proceeding to O(λ2

R), it can be seen that the structure in Eq. (3.93) gets cancelled
as well: the resummation of infrared divergences that we carried out explicitly in Eq. (3.98)
can indeed be fully captured by the reorganization in Eq. (3.101).
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