
3.7. Proper free energy density to O(λ): ultraviolet renormalization

In Sec. 3.4 we attempted to compute the free energy density f(T ) of scalar field theory up to
O(λ), but found a result which appeared divergent. Let us now show that, as must be the case
in a renormalizable theory, the divergences disappear order-by-order in perturbation theory, if we
re-express f(T ) in terms of finite renormalized parameters.

In order to proceed properly, we need to first change the notation somewhat. The zero-temperature
parameters we employed before, m2, λ, will now be re-interpreted as bare parameters, m2

B, λB .
(The temperature T , in contrast, is a physical property of the system, and is not subject to any
modifications.) The expansion in Eq. (3.45) can then be written as

f(T ) = φ(0)(m2
B, T ) + λB φ(1)(m2

B, T ) + O(λ2
B) . (3.66)

As a second step, we introduce some renormalized parameters, m2
R, λR. These could either be

directly physical quantities (say, the mass of the scalar particle, and the scattering amplitude with
some particular kinematics), or quantities which are not yet directly physical, but are related
to physical quantities by finite equations (say, so-called MS scheme parameters). In any case,
it is natural to choose the renormalized parameters such that in the limit of an extremely weak
interaction, λR ≪ 1, they formally agree with the bare parameters. In other words,

m2
B = m2

R + λR f (1)(m2
R) + O(λ2

R) , (3.67)

λB = λR + λ2
R g(1)(m2

R) + O(λ3
R) . (3.68)

Note that renormalized parameters are defined at zero temperature, so no T can appear in these
relations. The functions f (i) and g(i) are, in general, divergent in the limit that regularization is
removed; for instance, in dimensional regularization, they contain poles like 1/ǫ.

The idea now is simply to convert the expansion in Eq. (3.66) into an expansion in λR, by
inserting the expressions from Eqs. (3.67), (3.68), and Taylor-expanding in λR:

f(T ) = φ(0)(m2
R, T ) + λR

[

φ(1)(m2
R, T ) +

∂φ(0)(m2
R, T )

∂m2
R

f (1)(m2
R)

]

+ O(λ2
R) . (3.69)

We note that to O(λ2
R), only the mass parameter needs to be renormalized.

To carry out the renormalization in practice, we need to choose a scheme. We will here choose the
so-called pole mass scheme, where m2

R is taken to be the physical mass squared of the φ-particle,
denoted by m2

phys. In Minkowskian spacetime, this appears as the exponential time-evolution
factor,

e−iE0t ≡ e−imphyst , (3.70)

in the propagator of a particle at rest, p = 0. In Euclidean spacetime, this corresponds to the
exponential fall-off, exp(−mphysτ), of the propagator. Therefore, in order to determine m2

phys to
O(λR), we need to compute the full propagator, G(x), to O(λR) at zero temperature.

The full propagator can be defined as the generalization of Eq. (3.37) to the interacting case:

G(x) ≡
〈φ(x)φ(0) exp(−SI)〉0

〈exp(−SI)〉0

=
〈φ(x)φ(0)〉0 − 〈φ(x)φ(0)SI 〉0 + O(λ2

B)

1 − 〈SI〉0 + O(λ2
B)

= 〈φ(x)φ(0)〉0 −
[

〈φ(x)φ(0)SI 〉0 − 〈φ(x)φ(0)〉0〈SI〉0

]

+ O(λ2
B) . (3.71)

We may recall from Quantum Field Theory that the second term inside the square brackets serves
to cancel disconnected contractions, just like the subtractions in Eq. (3.10) did for the free energy
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density. Therefore, we will drop the second term in the following, and replace the expectation
value in the first term by 〈...〉0,c, like we already did in Eq. (3.21).

Now, let us start by inspecting the leading (zeroth order) term in Eq. (3.71), in order learn how
mphys can be conveniently extracted from the propagator. Introducing the notation

∫

P̃

≡ lim
T→0

∑
∫

P̃

=

∫
dd+1P̃

(2π)d+1
, (3.72)

the free propagator reads (cf. Eq. (3.26))

G0(x) = 〈φ(x)φ(0)〉0 =

∫

P̃

eiP̃ ·x

P̃ 2 + m2
. (3.73)

For Eq. (3.70), we need to project to zero spatial momentum, p = 0; evidently, this can be achieved
by taking a spatial average of G0(x):

∫

ddx 〈φ(τ,x)φ(0)〉0 =

∫
dp0

2π

eip0τ

p2
0 + m2

. (3.74)

We see that we get an integral which can be evaluated with the help of the Cauchy theorem and,
in particular, that the exponential fall-off of the correlation function is determined by the pole
position of the momentum-space propagator:

∫

ddx 〈φ(τ,x)φ(0)〉0 =
1

2π
2πi

e−mτ

2im
, τ ≥ 0 . (3.75)

Hence,
m2

phys

∣
∣
λ=0

= m2 , (3.76)

and, more generally, the physical mass can be extracted by determining the pole position of the full

propagator in momentum space.

We then proceed to the second term in Eq. (3.71):

−〈φ(x)φ(0)SI 〉0,c = −
λB

4

∫

z

〈φ(x)φ(0) φ(z)φ(z)φ(z)φ(z)〉0,c

= −
λB

4

∫

z

4 × 3 〈φ(x)φ(z)〉0 〈φ(z)φ(0)〉0 〈φ(z)φ(z)〉0

= −3λBG0(0)

∫

z

G0(z)G0(x − z)

= −3λB

∫

P̃

1

P̃ 2 + m2
B

∫

z

∫

Q̃,R̃

eiQ̃·zeiR̃·(x−z) 1

Q̃2 + m2
B

1

R̃2 + m2
B

= −3λBI0(mB)

∫

R̃

eiR̃·x

(R̃2 + m2
B)2

. (3.77)

Summing together with Eq. (3.73), the full propagator reads

G(x) =

∫

P̃

eiP̃ ·x

[
1

P̃ 2 + m2
B

− 3λBI0(mB)
1

(P̃ 2 + m2
B)2

+ O(λ2
B)

]

=

∫

P̃

eiP̃ ·x

P̃ 2 + m2
B + 3λBI0(mB)

+ O(λ2
B) , (3.78)

where we have effectively resummed a series of higher order corrections.

The same steps that lead us from Eq. (3.74) to (3.76) now produce

m2
phys = m2

B + 3λBI0(mB) + O(λ2
B) . (3.79)
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Recalling from Eq. (3.68) that m2
B = m2

R +O(λR), λB = λR +O(λ2
R), this relation can be inverted,

to give
m2

B = m2
phys − 3λRI0(mphys) + O(λ2

R) . (3.80)

This corresponds precisely to Eq. (3.67). The function I0, given in Eq. (2.73), diverges in the limit
ǫ → 0,

I0(mphys) = −
m2

phys

16π2
µ−2ǫ

[
1

ǫ
+ ln

µ̄2

m2
phys

+ 1 + O(ǫ)

]

, (3.81)

and we may hope that the divergence cancels the unphysical ones that we found in f(T ).

Indeed, let us take the step from Eq. (3.66) to Eq. (3.69), employing the explicit expression from
Eq. (3.45),

f(T ) = J(mB, T ) +
3

4
λB [I(mB, T )]2 + O(λ2

B) . (3.82)

Recalling from Eq. (2.52) that

I(m, T ) =
1

m

d

dm
J(m, T ) = 2

d

dm2
J(m, T ) , (3.83)

we can expand the two terms in Eq. (3.82) as a Taylor series around m2
phys,

J(mB, T ) = J(mphys, T ) + (m2
B − m2

phys)
∂J(mphys, T )

∂m2
phys

+ O(λ2
R)

= J(mphys, T ) −
3

2
λRI0(mphys)I(mphys, T ) + O(λ2

R) , (3.84)

λB[I(mB , T )]2 = λR[I(mphys, T )]2 + O(λ2
R) , (3.85)

where we inserted Eq. (3.80). Eq. (3.82) then becomes

f(T ) = J(mphys, T ) +
3

4
λR

[

I2(mphys, T ) − 2I0(mphys) I(mphys, T )
]

+ O(λ2
R)

=

{

J0(mphys) −
3

4
λRI2

0 (mphys)

}

︸ ︷︷ ︸

+

{

JT (mphys) +
3

4
λRI2

T (mphys)

}

︸ ︷︷ ︸

+O(λ2
R) , (3.86)

T = 0 part T 6= 0 part

where we have inserted the definitions from Eq. (2.56), J(m, T ) = J0(m) + JT (m), I(m, T ) =
I0(m) + IT (m).

Recalling Eqs. (2.72), (2.73), the first term in Eq. (3.86), the “T = 0 part”, is divergent. How-
ever, this term is completely independent of the temperature. Thus it does not play a role in
thermodynamics, but rather corresponds to a vacuum energy density: it only plays a physical role
in connection with gravity. If we included gravity, however, we should also include a bare cosmo-
logical constant, ΛB, to the bare Lagrangian; it would contribute additively to Eq. (3.86), and we
can simply define

Λphys ≡ ΛB + J0(mphys) −
3

4
λRI2

0 (mphys) + O(λ2
R) . (3.87)

The divergences are now “eaten up” by ΛB, and Λphys is finite.

In contrast, the second term in Eq. (3.86), the “T 6= 0 part”, is finite: it contains the functions
JT , IT for which we have determined analytically various limiting values in Eqs. (2.78), (2.79),
(2.81), (2.92), and general integral expressions in Eqs. (2.75), (2.76). Therefore all thermodynamic
quantities obtained from derivatives of f(T ), such as the entropy density, specific heat, etc, are
manifestly finite. In other words, the temperature-dependent ultraviolet divergences that we found
in Sec. 3.4 have indeed disappeared through zero-temperature renormalization, as must be the case.
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