3.4. Naive free energy density to $\mathcal{O}(\lambda)$: ultraviolet divergences

We now return to the free energy density of scalar field theory, given by Eqs. (3.16), (3.18), (3.22). Noting from Eqs. (2.54) and (3.26) that $G_{0}(0)=I(m, T)$, we obtain to $\mathcal{O}(\lambda)$ that

$$
\begin{equation*}
f(T)=J(m, T)+\frac{3}{4} \lambda[I(m, T)]^{2} \tag{3.45}
\end{equation*}
$$

According to Eqs. (2.72), (2.73),

$$
\begin{align*}
& J(m, T)=-\frac{m^{4}}{64 \pi^{2}} \mu^{-2 \epsilon}\left[\frac{1}{\epsilon}+\ln \frac{\bar{\mu}^{2}}{m^{2}}+\frac{3}{2}+\mathcal{O}(\epsilon)\right]+J_{T}(m) \tag{3.46}\\
& I(m, T)=-\frac{m^{2}}{16 \pi^{2}} \mu^{-2 \epsilon}\left[\frac{1}{\epsilon}+\ln \frac{\bar{\mu}^{2}}{m^{2}}+1+\mathcal{O}(\epsilon)\right]+I_{T}(m) \tag{3.47}
\end{align*}
$$

where the functions $J_{T}(m)$ and $I_{T}(m)$ are finite, and were evaluated in various limits in Eqs. (2.78), (2.79), (2.81), (2.92).

Inserting Eqs. (3.46), (3.47) into Eq. (3.45), we note that the result is, in general, ultraviolet divergent. For instance, restricting for simplicity to very high temperatures, $T \gg m$, and making use of Eq. (2.92),

$$
\begin{equation*}
I_{T}(m) \approx \frac{T^{2}}{12}-\frac{m T}{4 \pi}+\mathcal{O}\left(m^{2}\right) \tag{3.48}
\end{equation*}
$$

the dominant term at $\epsilon \rightarrow 0$ reads

$$
\begin{equation*}
f(T) \approx-\frac{\mu^{-2 \epsilon}}{64 \pi^{2} \epsilon}\left\{m^{4}+\lambda\left[\frac{1}{2} T^{2} m^{2}-\frac{3}{2 \pi} T m^{3}+\mathcal{O}\left(m^{4}\right)\right]+\mathcal{O}\left(\lambda^{2}\right)\right\}+\mathcal{O}(1) \tag{3.49}
\end{equation*}
$$

This result is obviously non-sensical: the divergences appear even to depend on the temperature. A proper procedure requires renormalization; we return to this in Sec. 3.7, but identify first also another problem with the naive result.

3.5. Naive free energy density to $\mathcal{O}\left(\lambda^{2}\right)$: infrared divergences

Let us consider the second order contribution to Eq. (3.45), given in Eq. (3.22). With the notation of Eqs. (3.20), (3.37), we can write it as

$$
\begin{equation*}
f_{(2)}(T)=-\frac{3}{4} \lambda^{2} \int_{x}\left[G_{0}(x)\right]^{4}-\frac{9}{4} \lambda^{2}[I(m, T)]^{2} \int_{x}\left[G_{0}(x)\right]^{2} . \tag{3.50}
\end{equation*}
$$

The question we would like to answer is, what happens if we take the limit that the particle mass m is very small, $m \ll T$. As Eqs. (3.45), (2.81), (3.48) show, at $\mathcal{O}(\lambda)$ this limit is perfectly welldefined. Consider then the first term in Eq. (3.50). We know from Eq. (3.42) that the behaviour of $G_{0}(x)$ is independent of m at small x; thus nothing particular happens for $|\mathbf{x}| \ll T^{-1}$. On the other hand, for large $|\mathbf{x}|, G_{0}(x)$ is given by Eq. (3.42). We can estimate the contribution as

$$
\begin{equation*}
\int_{|\mathbf{x}| \gtrsim T^{-1}}\left[G_{0}(x)\right]^{4} \sim \int_{0}^{\beta} \mathrm{d} \tau \int_{|\mathbf{x}|} \gtrsim T^{-1} \mathrm{~d}^{3} \mathbf{x}\left(\frac{T e^{-m|\mathbf{x}|}}{4 \pi|\mathbf{x}|}\right)^{4} \tag{3.51}
\end{equation*}
$$

This integral is convergent even for $m \rightarrow 0$; so in the first term of Eq. (3.50), taking $m \rightarrow 0$ does not cause any divergences.

Consider then the second term in Eq. (3.50). Repeating the argument of Eq. (3.51), we get

$$
\begin{equation*}
\int_{|\mathbf{x}|} \gtrsim T^{-1}\left[G_{0}(x)\right]^{2} \sim \int_{0}^{\beta} \mathrm{d} \tau \int_{|\mathbf{x}|} \mathrm{d}^{-1} \mathrm{~d} \mathbf{x}\left(\frac{T e^{-m|\mathbf{x}|}}{4 \pi|\mathbf{x}|}\right)^{2} \tag{3.52}
\end{equation*}
$$

If we now attempt to take $m \rightarrow 0$, the integral is linearly divergent! Because the problem emerges from large distances, we call this an infrared divergence.

In fact, it is easy to be more precise about the form of the divergence. We can write

$$
\begin{align*}
\int_{x}\left[G_{0}(x)\right]^{2} & =\int_{x} \mathcal{F}_{\tilde{P}} \frac{e^{i \tilde{P} \cdot x}}{\tilde{P}^{2}+m^{2}} \mathcal{F}_{\tilde{Q}} \frac{e^{i \tilde{Q} \cdot x}}{\tilde{Q}^{2}+m^{2}} \\
& =\sum_{\tilde{P}, \tilde{Q}} \delta(\tilde{P}+\tilde{Q}) \frac{1}{\left(\tilde{P}^{2}+m^{2}\right)\left(\tilde{Q}^{2}+m^{2}\right)} \\
& =\sum_{P} \frac{1}{\left[\tilde{P}^{2}+m^{2}\right]^{2}} \\
& =-\frac{\mathrm{d}}{\mathrm{~d} m^{2}} I(m, T) \tag{3.53}
\end{align*}
$$

Inserting Eq. (3.48), we get

$$
\begin{equation*}
\int_{x}\left[G_{0}(x)\right]^{2}=-\frac{1}{2 m} \frac{\mathrm{~d}}{\mathrm{~d} m} I(m, T)=\frac{T}{8 \pi m}+\mathcal{O}(1) \tag{3.54}
\end{equation*}
$$

Therefore, for $m \ll T$, Eq. (3.50) evaluates to

$$
\begin{equation*}
f_{(2)}(T)=-\frac{9}{4} \lambda^{2} \frac{T^{4}}{144} \frac{T}{8 \pi m}+\mathcal{O}\left(m^{0}\right) \tag{3.55}
\end{equation*}
$$

and indeed diverges for $m \rightarrow 0$.
It is clear that, like the ultraviolet divergence in Eq. (3.49), the infrared divergence in Eq. (3.55) must also be an artifact of some sort: a gas of weakly interacting massless scalar particles should certainly have a finite pressure and other thermodynamic properties, just like a gas of massless photons has. We return to the resolution of this problem in Sec. 3.8.

3.6. Exercise 4

(a) Let us consider a scalar field theory where the interaction term $\frac{1}{4} \lambda \phi^{4}$ is replaced with $\frac{1}{3} \gamma \phi^{3}$. Derive the expression for $f(T)$ up to $\mathcal{O}\left(\gamma^{3}\right)$.
(b) What kind of infrared divergences does this expression have, if we take the limit $m \rightarrow 0$?

Solution to Exercise 4

(a) According to Eq. (3.10), the radiative corrections to the free energy density can be compactly represented by the formula

$$
\begin{align*}
f_{(\geq 1)}(T) & =-\frac{1}{\beta V}\left\langle\exp \left(-S_{I}\right)\right\rangle_{0, \text { connected }} \\
& =\left\langle S_{I}-\frac{1}{2} S_{I}^{2}+\ldots\right\rangle_{0, \text { connected,drop overall } \int_{x}} \tag{3.56}
\end{align*}
$$

The term of $\mathcal{O}(\gamma)$ obviously vanishes, since it contains an odd number of fields. The term of $\mathcal{O}\left(\gamma^{2}\right)$ reads

$$
\begin{equation*}
f_{(2)}(T)=-\frac{\gamma^{2}}{18} \int_{x}\langle\phi(x) \phi(x) \phi(x) \phi(0) \phi(0) \phi(0)\rangle_{0, \mathrm{c}} \tag{3.57}
\end{equation*}
$$

Here, according to the Wick theorem,

$$
\begin{align*}
& \langle\phi(x) \phi(x) \phi(x) \phi(0) \phi(0) \phi(0)\rangle_{0, \mathrm{c}} \\
& \quad=3\langle\phi(x) \phi(0)\rangle_{0}\langle\phi(x) \phi(x) \phi(0) \phi(0)\rangle_{0, \mathrm{c}}+ \\
& \quad+2\langle\phi(x) \phi(x)\rangle_{0}\langle\phi(x) \phi(0) \phi(0) \phi(0)\rangle_{0, \mathrm{c}} \\
& \quad=3 \times 2\langle\phi(x) \phi(0)\rangle_{0}\langle\phi(x) \phi(0)\rangle_{0}\langle\phi(x) \phi(0)\rangle_{0}+ \\
& \quad+3 \times 1\langle\phi(x) \phi(0)\rangle_{0}\langle\phi(x) \phi(x)\rangle_{0}\langle\phi(0) \phi(0)\rangle_{0}+ \\
& \quad+2 \times 3\langle\phi(x) \phi(x)\rangle_{0}\langle\phi(x) \phi(0)\rangle_{0}\langle\phi(0) \phi(0)\rangle_{0} \\
& \quad=6\langle\phi(x) \phi(0)\rangle_{0}\langle\phi(x) \phi(0)\rangle_{0}\langle\phi(x) \phi(0)\rangle_{0}+ \\
& \quad+9\langle\phi(x) \phi(x)\rangle_{0}\langle\phi(x) \phi(0)\rangle_{0}\langle\phi(0) \phi(0)\rangle_{0}, \tag{3.58}
\end{align*}
$$

and we get

$$
\begin{equation*}
f_{(2)}(T)=-\frac{1}{3} \gamma^{2} \int_{x}\left[G_{0}(x)\right]^{3}-\frac{1}{2} \gamma^{2}\left[G_{0}(0)\right]^{2} \int_{x} G_{0}(x) \tag{3.59}
\end{equation*}
$$

It turns out, however, that the latter term in Eq. (3.59) should actually be neglected. The reason is that once we add the interaction $\frac{1}{3} \gamma \phi^{3}$, then the "ground state" of the theory is no longer at $\langle\phi\rangle=0$, as we have (implicitly) assumed; to see this, just compute $\langle\phi\rangle$ to $\mathcal{O}(\gamma)$! On the other hand, the problem can be rectified by also adding another term to the potential $V(\phi)$, of the type $\alpha \phi$. Then there are additional contributions both to $\langle\phi\rangle$ and to $f(T)$:

$$
\begin{align*}
\langle\phi(0)\rangle & \approx\left\langle\phi(0) \int_{x}\left[-\alpha \phi(x)-\frac{1}{3} \gamma \phi(x) \phi(x) \phi(x)\right]\right\rangle_{0} \\
& =-\left[\alpha+\gamma G_{0}(0)\right] \int_{x} G_{0}(x) \tag{3.60}\\
\delta f(T) & \approx-\frac{1}{2} \int_{x}\left\langle\alpha^{2} \phi(x) \phi(0)+\frac{1}{3} \alpha \gamma[\phi(x) \phi(x) \phi(x) \phi(0)+\phi(x) \phi(0) \phi(0) \phi(0)]\right\rangle_{0} \\
& =-\frac{1}{2}\left[\alpha^{2}+2 \alpha \gamma G_{0}(0)\right] \int_{x} G_{0}(x) \tag{3.61}
\end{align*}
$$

Summing together Eq. (3.59) and (3.61), we get

$$
\begin{equation*}
f_{(2)}(T)=-\frac{1}{3} \gamma^{2} \int_{x}\left[G_{0}(x)\right]^{3}-\frac{1}{2}\left[\alpha+\gamma G_{0}(0)\right]^{2} \int_{x} G_{0}(x) \tag{3.62}
\end{equation*}
$$

Hence, we note that if we choose the coefficient α such as to make the expression in Eq. (3.60) vanish, as it should, we simultaneously need to remove part of the terms in $f_{(2)}(T)$.
To summarise, a physically meaningful expression is given by

$$
\begin{equation*}
f(T)=J(m, T)-\frac{1}{3} \gamma^{2} \int_{x}\left[G_{0}(x)\right]^{3}+\mathcal{O}\left(\gamma^{4}\right) \tag{3.63}
\end{equation*}
$$

(b) Inspecting the large- $|\mathbf{x}|$ behaviour like in Eqs. (3.51), (3.52), we obtain

$$
\begin{equation*}
\int_{|\mathbf{x}| \gtrsim T^{-1}}\left[G_{0}(x)\right]^{3} \sim \int_{0}^{\beta} \mathrm{d} \tau \int_{|\mathbf{x}| \gtrsim T^{-1}} \mathrm{~d}^{3} \mathbf{x}\left(\frac{T e^{-m|\mathbf{x}|}}{4 \pi|\mathbf{x}|}\right)^{3} \tag{3.64}
\end{equation*}
$$

The radial part of the integration yields

$$
\begin{aligned}
\int_{x_{0}}^{\infty} \frac{\mathrm{d} x}{x} e^{-3 m x} & =\int_{x_{0}}^{\infty} \mathrm{d} x\left(\frac{\mathrm{~d}}{\mathrm{~d} x} \ln x\right) e^{-3 m x} \\
& =\left[\ln x e^{-3 m x}\right]_{x_{0}}^{\infty}+3 m \int_{x_{0}}^{\infty} \mathrm{d} x \ln x e^{-3 m x}
\end{aligned}
$$

$$
\begin{align*}
& =-\ln x_{0} e^{-3 m x_{0}}+3 m \int_{0}^{\infty} \mathrm{d} x \ln x e^{-3 m x}+\mathcal{O}\left(x_{0} m\right) \\
& =-\ln x_{0}+\int_{0}^{\infty} \mathrm{d} \hat{x} \ln \frac{\hat{x}}{3 m} e^{-\hat{x}}+\mathcal{O}\left(x_{0} m\right) \\
& =-\ln x_{0}-\ln (3 m) \int_{0}^{\infty} \mathrm{d} \hat{x} e^{-\hat{x}}+\int_{0}^{\infty} \mathrm{d} \hat{x} \ln \hat{x} e^{-\hat{x}}+\mathcal{O}\left(x_{0} m\right) \\
& =\ln \frac{1}{3 x_{0} m}-\gamma_{E}+\mathcal{O}\left(x_{0} m\right), \tag{3.65}
\end{align*}
$$

where we denoted $x \equiv|\mathbf{x}|$; inserted a lower bound x_{0} to the integration, assuming $x_{0} \ll 1 / m$; and set $x_{0} \rightarrow 0$ whenever that does not lead to an ultraviolet divergence.

We now see that Eq. (3.65) diverges logarithmically if we set $m \rightarrow 0$.

