
Figure 1: The exact result from Eq. (2.116); the low-temperature approximation from Eq. (2.117);
and five orders of the high-temperature approximation from Eq. (2.118).

3. Interacting scalar fields

In order to move from a free to an interacting theory, we now choose

V (φ) ≡ 1

2
m2φ2 +

1

4
λφ4 (3.1)

in Eq. (2.4), where λ > 0 is a dimensionless coupling constant. Thereby the Minkowskian and
Euclidean Lagrangians become

LM =
1

2
∂µφ∂µφ − 1

2
m2φ2 − 1

4
λφ4 , (3.2)

LE =
1

2
∂µφ∂µφ +

1

2
m2φ2 +

1

4
λφ4 , (3.3)

where repeated indices are again summed over, irrespective of whether they are up and down, or
both at the same altitude; and the case with all indices down implies the use of Euclidean metric
(i.e. no minus signs), like in Eq. (2.7).

Now, in the presence of λ > 0, it is no longer possible to exactly determine the partition function
of the system. We therefore need to develop approximation methods, which could in principle be
either analytic or numerical. In the following we restrict our attention to the simplest analytic
procedure which, as we will see, already teaches us quite a lot about the nature of the system.
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3.1. Weak-coupling expansion

In the weak-coupling expansion the theory is solved by assuming that λ ≪ 1, and by expressing
the result for the physical observable in question as a (generalized) Taylor series in λ.

The physical observable we are interested in, is the partition function in Eq. (2.6). Defining the
free and interacting parts of the Euclidean action as

S0 ≡
∫ β

0

dτ

∫

V

d3x

[

1

2
∂µφ∂µφ +

1

2
m2φ2

]

, (3.4)

SI ≡ λ

∫ β

0

dτ

∫

V

d3x

[

1

4
φ4

]

, (3.5)

the partition function can be written as

ZSFT(T ) = C

∫

Dφ e−S0−SI

= C
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]

, (3.6)

where

ZSFT
(0) = C

∫

Dφ e−S0 (3.7)

is the free partition function that we determined in Sec. 2, and the expectation value 〈· · ·〉0 is
defined as

〈· · ·〉0 ≡ C
∫

Dφ [· · ·] exp(−S0)

C
∫

Dφ exp(−S0)
. (3.8)

The free energy density then reads

F SFT(T, V )

V
= −T

V
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=
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]

(3.9)

=
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, (3.10)

where we have Taylor-expanded the logarithm, ln(1− x) = −x− x2/2− x3/3+ ... . The first term,
F SFT

(0) /V , is given in Eq. (2.26), while the subsequent terms correspond to corrections of orders

O(λ), O(λ2), and O(λ3). As we will see, the combinations that appear within the square brackets
in Eq. (3.10) have a very specific significance: Eq. (3.10) is actually simpler than Eq. (3.9)!

Inserting Eq. (3.5) into the various terms in Eq. (3.10), we are lead to evaluate expectation values
of the type

〈φ(x1)φ(x2) . . . φ(xn)〉0 . (3.11)

These can be reduced to products of free two-point correlators, 〈φ(xk)φ(xl)〉0, through the Wick
theorem, as we now recall.
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3.2. Wick theorem

The Wick theorem states that free (Gaussian) expectation values of any number of integration
variables can be reduced to products of two-point correlators, according to

〈φ(x1)φ(x2) . . . φ(xn−1)φ(xn)〉0 =
∑

all combinations

〈φ(x1)φ(x2)〉0 · · · 〈φ(xn−1)φ(xn)〉0 . (3.12)

Before applying this to the terms in Eq. (3.10), we briefly recall, for completeness, how the theorem
can be derived with (path) integration techniques.

Let us assume that we discretise the space-time such that the coordinates x only take a finite
number of values (provided that the volume is finite as well). Then we can collect the values
φ(x), ∀x, into a single vector v. The free action can be written as S0 = 1

2 vT Av, where A is a
matrix; we assume that A−1 exists and that A is symmetric, AT = A.

The trick allowing to evaluate various integrals weighted by exp(−S0) is to introduce a source
vector b, and to take derivatives with respect to its components. Specifically, we introduce

exp
[
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]

≡
∫

dv exp
[
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]
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[

−1

2
viAijvj

]

, (3.13)

where we made use of a substitution of integration variables. We then obtain

〈vkvl...vn〉0 =

∫
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. (3.14)

Taking the derivatives in Eq. (3.14), it is clear that:

• 〈1〉0 = 1.

• If there is an odd number of components of v in the expectation value, the result is zero.

• 〈vkvl〉0 = A−1
kl .

• 〈vkvlvmvn〉0 = A−1
kl A−1

mn + A−1
kmA−1

ln + A−1
kn A−1

lm

= 〈vkvl〉0〈vmvn〉0 + 〈vkvm〉0〈vlvn〉0 + 〈vkvn〉0〈vlvm〉0 .

• And that, in general, we are lead to a discretized version of Eq. (3.12).

Since all of the operations carried out are purely combinatorial in nature, it is clear that removing
the discretization does not modify the result, and that thereby Eq. (3.12) indeed also holds in the
continuum limit.
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Let us now apply Eq. (3.12) to Eq. (3.10). We will denote

f(T ) ≡ lim
V →∞

F (T, V )

V
, (3.15)

where we have dropped out the superscript “SFT” for simplicity. From Eqs. (2.26), (2.51), (3.10),
the leading order result is the familiar one,

f(0)(T ) = J(m, T ) . (3.16)

At the first order, we get

f(1)(T ) = lim
V →∞

T

V
〈SI〉0 = lim

V →∞
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V

∫ β

0

dτ

∫

V

d3x
λ

4
〈φ(x)φ(x)φ(x)φ(x)〉0 . (3.17)

Here we can use the Wick theorem, Eq. (3.12). Noting furthermore that 〈φ(x)φ(y)〉0 can only
depend on x − y, due to translational invariance, the space-time integral is trivial, and we get

f(1)(T ) =
3

4
λ〈φ(0)φ(0)〉0〈φ(0)φ(0)〉0 . (3.18)

Finally, at the second order, we get

f(2)(T ) = lim
V →∞

{
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2V

[

〈S2
I 〉0 − 〈SI〉20

]

}
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{
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[
∫
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(λ

4

)2

〈φ(x)φ(x)φ(x)φ(x)φ(y)φ(y)φ(y)φ(y)〉0 −

−
∫

x

λ

4
〈φ(x)φ(x)φ(x)φ(x)〉0

∫

y

λ

4
〈φ(y)φ(y)φ(y)φ(y)〉0

]}

, (3.19)

where we have denoted
∫

x

≡
∫ β

0

dτ

∫

V

d3x . (3.20)

Carrying out contractions according to Eq. (3.12), the role of the “subtraction term”, the second
one in Eq. (3.19), now becomes clear: it cancels all disconnected contractions, i.e. contractions
of the type where all fields at point x are contracted with other fields at the same point. In
other words, the combination in Eq. (3.19) amounts to taking into account only the connected

contractions. This miraculous combinatorial fact is brought about by the logarithm in Eq. (3.10),
i.e., by going from the partition function to the free energy!

As far as the connected contractions are concerned, the Wick theorem tells that

〈φ(x)φ(x)φ(x)φ(x)φ(y)φ(y)φ(y)φ(y)〉0,c

= 4 〈φ(x)φ(y)〉0 〈φ(x)φ(x)φ(x)φ(y)φ(y)φ(y)〉0,c +

+ 3 〈φ(x)φ(x)〉0 〈φ(x)φ(x)φ(y)φ(y)φ(y)φ(y)〉0,c

= 4 × 3 〈φ(x)φ(y)〉0 〈φ(x)φ(y)〉0 〈φ(x)φ(x)φ(y)φ(y)〉0,c +

+ 4 × 2 〈φ(x)φ(y)〉0 〈φ(x)φ(x)〉0 〈φ(x)φ(y)φ(y)φ(y)〉0,c +

+ 3 × 4 〈φ(x)φ(x)〉0 〈φ(x)φ(y)〉0 〈φ(x)φ(y)φ(y)φ(y)〉0,c

= 4 × 3 × 2 〈φ(x)φ(y)〉0 〈φ(x)φ(y)〉0 〈φ(x)φ(y)〉0 〈φ(x)φ(y)〉0 +

+ (4 × 3 + 4 × 2 × 3 + 3 × 4 × 3)〈φ(x)φ(x)〉0 〈φ(x)φ(y)〉0 〈φ(x)φ(y)〉0 〈φ(y)φ(y)〉0 ,

(3.21)

where the subscript (...)c refers to “connected”.
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Inspecting the two-point correlators in Eq. (3.21), we note that they either depend on x − y, or
on neither x nor y (in the cases where fields at the same point are contracted). Thereby one of
the spacetime integrals is again trivial (just substitute x → x+ y, and note that 〈φ(x+ y)φ(y)〉0 =
〈φ(x)φ(0)〉0), and cancels against the factor T/V = 1/(βV ) in Eq. (3.19). In total, then

f(2)(T ) = −
(λ

4

)2
[

12

∫

x

〈φ(x)φ(0)〉40 + 36〈φ(0)φ(0)〉20
∫

x

〈φ(x)φ(0)〉20
]

. (3.22)

One could go on with the third-order terms in Eq. (3.10): again, it could be verified that the
“subtraction terms” cancel all disconnected contractions, so that only the connected ones contribute
to f(T ); and that one spacetime integral cancels against the explicit factor T/V . These facts are,
in fact, of general nature, and hold at any order in the weak-coupling expansion.

To summarise, the Wick theorem has allowed us to reduce the terms in Eq. (3.10) to various
structures made of the two-point correlator 〈φ(x)φ(0)〉0 . We now turn to its properties.

3.3. Propagator

The two-point correlator 〈φ(x)φ(y)〉0 is usually called the free propagator. Denoting

δ̄(P̃ + Q̃) ≡
∫

x

ei(P̃+Q̃)·x = βδp̃n+q̃n,0(2π)dδ(d)(p + q) , (3.23)

where P̃ ≡ (p̃n,p), and p̃n are bosonic Matsubara frequencies; and employing the Fourier-space
presentation

φ(x) ≡ ∑

∫

P̃

φ̃(P̃ )eiP̃ ·x , (3.24)

we recall from basic quantum field theory that the propagator can be written as

〈φ̃(P̃ )φ̃(Q̃)〉0 = δ̄(P̃ + Q̃)
1

P̃ 2 + m2
, (3.25)

〈φ(x)φ(y)〉0 =
∑

∫

P̃

eiP̃ ·(x−y) 1

P̃ 2 + m2
. (3.26)

Before inserting these expressions into Eqs. (3.18), (3.22), we briefly review their derivation, as
well as some basic properties of 〈φ(x)φ(y)〉0 .

In order to carry out the derivation, we return for a moment to a finite volume V , and proceed
as in Sec. 2.2. Let us start by inserting Eq. (3.24) into the definition of the propagator,

〈φ(x)φ(y)〉0 =
∑

∫

P̃ ,Q̃

eiP̃ ·x+iQ̃·y〈φ̃(P̃ )φ̃(Q̃)〉0 . (3.27)

In order to compute this expectation value, we insert Eq. (3.24) also into the free action, S0, finding

S0 =
1

2

∑

∫

P̃

φ̃(−P̃ )(P̃ 2 + m2)φ̃(P̃ ) =
1

2

∑

∫

P̃

(P̃ 2 + m2)|φ̃(P̃ )|2 . (3.28)

We write φ̃(P̃ ) = a(P̃ ) + i b(P̃ ), with a(−P̃ ) = a(P̃ ), b(−P̃ ) = −b(P̃ ); only half of the Fourier
components are independent, and we could choose the ones specified in Eq. (2.13).

Restricting the sum to independent components, and making use of the symmetry properties of
a(P̃ ) and b(P̃ ), Eq. (3.28) becomes

S0 =
T

V

∑

P̃indep.

(P̃ 2 + m2)[a2(P̃ ) + b2(P̃ )] . (3.29)
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The Gaussian integral,
∫

dxx2 exp(−cx2)
∫

dx exp(−cx2)
=

1

2c
, (3.30)

and the symmetries of a(P̃ ) and b(P̃ ), thus imply that

〈a(P̃ ) b(Q̃)〉0 = 0 , (3.31)

〈a(P̃ ) a(Q̃)〉0 = (δP̃ ,Q̃ + δP̃ ,−Q̃)
V

2T

1

P̃ 2 + m2
, (3.32)

〈b(P̃ ) b(Q̃)〉0 = (δP̃ ,Q̃ − δP̃ ,−Q̃)
V

2T

1

P̃ 2 + m2
, (3.33)

where the delta-functions are of Kronecker-type in finite volume. Thereby the propagator becomes

〈φ̃(P̃ )φ̃(Q̃)〉0 = 〈a(P̃ ) a(Q̃) + i a(P̃ ) b(Q̃) + i b(P̃ ) a(Q̃) − b(P̃ ) b(Q̃)〉0
= δP̃ ,−Q̃

V

T

1

P̃ 2 + m2
= βδp̃n+q̃n,0V δp+q,0

1

P̃ 2 + m2
. (3.34)

In the infinite-volume limit,

1

V

∑

p

−→
∫

ddp

(2π)d
, V δp,0 −→ (2π)dδ(d)(p) , (3.35)

and we recover Eq. (3.25) which, in combination with Eq. (3.27), in turn leads to Eq. (3.26).

We would now like to learn something more about the behaviour of the propagator 〈φ(x)φ(y)〉0 ,
at short and large separations x − y. We note, first of all, that as shown by Eqs. (1.84), (1.73),

T
∑

p̃n

eip̃nτ

p̃2
n + E2

=
1

2E

cosh
[(

β
2 − τ

)

E
]

sinh
[

βE
2

] . (3.36)

This equation is valid for 0 ≤ τ ≤ β; as is obvious from the left-hand side, we can extend the
validity to −β ≤ τ ≤ β by replacing τ by |τ |. Thereby the propagator from Eq. (3.26) now
becomes

G0(x − y) ≡ 〈φ(x)φ(y)〉0 =

∫

ddp

(2π)d
eip·(x−y) 1

2Ep

cosh
[(

β
2 − |x0 − y0|

)

Ep

]

sinh
[

βEp

2

]

∣

∣

∣

∣

∣

∣

Ep≡
√

p2+m2

. (3.37)

Since G0 only depends on the separation x − y, we set y = 0 in the following.

Consider first short distances, |x|, |x0| ≪ 1/T, 1/m. We may expect the dominant contribution in
the Fourier transform in Eq. (3.37) to come from the regime |p||x| ∼ 1, so let us assume |p| ≫ T, m.
Then Ep ≈ |p|, and βEp ≈ |p|/T ≫ 1. Consequently,

cosh
[(

β
2 − |x0|

)

Ep

]

sinh
[

βEp

2

] ≈
exp

[(

β
2 − |x0|

)

Ep

]

exp
[

βEp

2

] ≈ e−|x0||p| . (3.38)

We note that
1

2|p|e
−|x0||p| =

∫ ∞

−∞

dp0

2π

eip0x0

p2
0 + p2

, (3.39)

whereby

G0(x) ≈
∫

dd+1P

(2π)d+1

eiP ·x

P 2
, (3.40)
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with P ≡ (p0,p).

At this point we can make use of rotational symmetry, in order to choose x in the direction of
the component p0. Then

∫

dd+1P

(2π)d+1

eiP ·x

P 2
=

∫

ddp

(2π)d

∫ ∞

−∞

dp0

2π

eip0|x|

p2
0 + p2

=

∫

ddp

(2π)d

e−|x||p|

2|p|

=
1

(2π)d

πd/2

Γ(d/2)

∫ ∞

0

d|p||p|d−2e−|x||p|

=
Γ(d − 1)

(4π)d/2Γ(d/2)|x|d−1
, (3.41)

where we made use of Eq. (2.61). Inserting d = 3 and Γ(3/2) =
√

π/2, we find

G0(x) ≈ 1

4π2|x|2 , |x| ≪ 1

T
,

1

m
. (3.42)

We note that this behaviour is independent of T and m: at short enough distances (in the “ultra-
violet” regime), temperature and masses do not play a role, and the propagator diverges.

Consider, on the other hand, large distances, |x| ≫ 1/T (the temporal coordinate x0 remains by
construction always “small”, i.e. is at most 1/T ). We expect the Fourier-transform in Eq. (3.37)
to now be dominated by small momenta, |p| ≪ T . If we simplify the situation further by assuming
that we are also at very high temperatures, T ≫ m, then βEp ≪ 1 in the relevant regime, and we
can expand the hyperbolic functions in Taylor series, cosh(ǫ) ≈ 1, sinh(ǫ) ≈ ǫ. Then

G0(x) ≈ T

∫

ddp

(2π)d

eip·x

p2 + m2
. (3.43)

Restricting for simplicity to d = 3, we can write4

G0(x) ≈ T

(2π)2

∫ +1

−1

dz

∫ ∞

0

d|p| |p|2 ei|p||x|z

|p|2 + m2

=
T

(2π)2

∫ ∞

0

d|p| |p|2
|p|2 + m2

ei|p||x| − e−i|p||x|

i|p||x|

=
T

(2π)2i|x|

∫ ∞

−∞

dp p eip|x|

p2 + m2

= T
e−m|x|

4π|x| , |x| ≫ 1

T
, (3.44)

where the last integral was carried out by closing the contour in the upper half plane.

We note from Eq. (3.44) that at large distances (in the “infrared” regime), thermal effects modify
the behaviour of the propagator in an essential way. In particular, if we were to set the mass to
zero, then Eq. (3.42) would be the exact behaviour at zero temperature, both at small and at
large distances, while Eq. (3.42) shows that a temperature would “slow down” the long-distance
decay to T/(4π|x|). In other words, we can say that at a non-zero temperature the theory is more
sensitive to infrared physics than at zero temperature.

4For a general d,
R dd

p

(2π)d
eip·x

p2+m2
= 1

(2π)d/2
( m
|x|

)d/2−1Kd/2−1(m|x|), where K is a modified Bessel function.

34


