
Thereby we have arrived at the main conclusion of this section: at low temperatures, T ≪ m,
finite-temperature effects in a theory with a mass gap are exponentially suppressed by the Boltz-
mann factor, exp(−m/T ). In fact the results agree with those in non-relativistic classical statistical
mechanics. Consequently, the results for the functions J(m, T ), I(m, T ) can be well approximated
by their zero-temperature limits, J0(m), I0(m), given in Eqs. (2.72), (2.73), respectively.

2.6. High-temperature expansion

We now move to the opposite limit than in the previous section, i.e. T ≫ m or, in terms of
Eq. (2.75), y = m/T ≪ 1. It appears obvious that the procedure then should be a Taylor
expansion in y2, around y2 = 0. The zeroth order term, for instance, yields

JT (0) =
T 4

2π2

∫ ∞

0

dxx2 ln
(

1 − e−
√

x2

)

= −π2T 4

90
, (2.80)

which is nothing but the free-energy density (minus the pressure) of black-body radiation with one
massless degree of freedom. A term of order O(y2) can also be computed exactly.

However, that is as far as it works: trying to go to the second order, O(y4), one finds that
the integral determining the coefficient of y4 is power-divergent for small x! In other words, the
function JT (m) is not analytic around the origin in the variable m2.

Nevertheless, Eq. (2.75) can still be expanded in a generalized sense, as we will see. The result
will in fact read

JT (m) = −π2T 4

90
+

m2T 2

24
−m3T

12π
− m4

2(4π)2

[

ln

(

meγE

4πT

)

− 3

4

]

+
m6ζ(3)

3(4π)4T 2
+O

(

m8

T 4

)

+O(ǫ) , (2.81)

where m ≡ (m2)1/2. It is the cubic term in Eq. (2.81) which first indicates that JT (m) is not
analytic in m2 around the origin (because there is a branch cut); this term plays a very important
role in certain physical contexts, as we will see later on.

Our goal now is to derive the expansion in Eq. (2.81). A classic derivation, starting directly
from the definition in Eq. (2.75), can be found in a paper by Dolan and Jackiw, Phys. Rev. D 9
(1974) 3320. It will be easier, and ultimately more useful, to carry out another type of derivation,
however: we start from Eq. (2.51) rather than Eq. (2.50), and now carry out first the integration
∫

k
, and only then the sum

∑

ωn
.

Of course, Eq. (2.51) contains inconvenient additional constant terms, which appears problem-
atic. Fortunately we already know that mass-independent correct value of J(0, T ): it is given in
Eq. (2.80). Therefore it is enough to study I(m, T ), in which case the starting point, Eq. (2.54),
is simple enough, and subsequently integrate for J(m, T ) as

J(m, T ) =

∫ m

0

dm′ m′ I(m′, T ) + J(0, T ) . (2.82)

Proceeding now with I(m, T ) in Eq. (2.54), the essential insight is to split the sum into the
contribution of the zero-mode, ωn = 0, and that of the non-zero modes, ωn 6= 0. Using the
notation of Eq. (2.55), we thus write

∑

∫

K̃

=
∑

∫ ′

K̃

+ T

∫

k

. (2.83)

Let us first compute the contribution of the last term, which will be denoted by I(n=0).
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To start with, let us return to the infrared divergences alluded to above. Trying naively a Taylor
expansion in m2, we would get

I(n=0) = T

∫

k

1

k2 + m2
= T

∫

ddk

(2π)d

[

1

k2
− m2

k4
+

m4

k6
+ . . .

]

. (2.84)

For d = 3 − 2ǫ, the first term is “ultraviolet divergent”, i.e. grows at large |k|; while the second
and subsequent terms are “infrared divergent”, i.e. explode at small |k| too fast to be integrable.
(Of course, in dimensional regularization, every term in Eq. (2.84) appears strictly speaking to be
zero. The total result is non-zero, however, as we will see: thus the Taylor expansion in Eq. (2.84)
is really not justified, whichever way one looks at it.)

We now compute the integral in Eq. (2.84) properly. The result can be directly read from
Eq. (2.64), by just setting d = 3 − 2ǫ, A = 1:

I(n=0) = TF (m, 3−2ǫ, 1) = T
1

(4π)3/2−ǫ

Γ(− 1
2 + ǫ)

Γ(1)

1

(m2)−1/2+ǫ

Γ(− 1

2
)=−2

√
π

= −Tm

4π
+O(ǫ) . (2.85)

This result is quite remarkable: a linearly divergent integral over a manifestly positive function is
finite and negative in dimensional regularization! According to Eq. (2.52), the corresponding term
in J (n=0) reads

J (n=0) = −Tm3

12π
+ O(ǫ) . (2.86)

Given the importance of the result, and its somewhat counter-intuitive appearance, it is worth-
while to demonstrate that Eq. (2.85) is not an artifact of dimensional regularization. Indeed, let
us compute it with cutoff regularization, by restricting |k| to be smaller than an upper bound, Λ:

I(n=0) = T
4π

(2π)3

∫ Λ

0

dkk2

k2 + m2

=
T

2π2

[

Λ − m2

∫ Λ

0

dk

k2 + m2

]

=
T

2π2

[

Λ − m arctan
( Λ

m

)

]

= T

[

Λ

2π2
− m

4π
+ O

(

m2

Λ

)]

. (2.87)

We now observe that, due to the first term, Eq. (2.87) is indeed positive. This term is unphysical,
however: it must be cancelled by similar terms emerging from the non-zero modes, since the
temperature-dependent part of Eq. (2.53) is manifestly finite. Representing a power divergence, it
does not appear in dimensional regularization at all. The second term in Eq. (2.87) is the physical
one; it indeed agrees with Eq. (2.85). The remaining terms in Eq. (2.87) vanish when we take the
cutoff to infinity, and are the analogy of the O(ǫ)-terms of Eq. (2.85).

We next turn to the contribution of the non-zero Matsubara modes, which will be denoted by
I ′(m, T ). It is important to realise that in this case, a Taylor expansion in m2 can be carried out:
the integrals will be of the type

∫

k

(m2)n

(ω2
n + k2)n+1

, ωn 6= 0 , (2.88)

and thus the integrand remains finite for small |k|, i.e., there are no infrared divergences. (There
could be ultraviolet divergences at small n, but these are taken care of by the regularization.)

More explicitly,

I ′(m, T ) = T
∑

ω′

n

∫

ddk

(2π)d

1

ω2
n + k2 + m2
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Taylor
= 2T

∞
∑

n=1

∫

ddk

(2π)d

∞
∑

l=0

(−1)l m2l

[(2πnT )2 + k2]l+1

Eq. (2.64)
= 2T

∞
∑

n=1

∞
∑

l=0

(−1)lm2l 1

(4π)d/2

Γ(l + 1 − d
2 )

Γ(l + 1)

1

(2πnT )2l+2−d
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1

(4π)d/2(2πT )2−d

∞
∑

l=0

[ −m2

(2πT )2

]l Γ(l + 1 − d
2 )

Γ(l + 1)
ζ(2l + 2 − d) , (2.89)

where in the last step we have interchanged the orders of the two summations, and identified the n-
sum as a Riemann zeta function, ζ(s) ≡

∑∞
n=1 n−s. Some of the properties of ζ(s) are summarised

in Sec. 2.7.

Let us work out the orders l = 0, 1, 2 explicitly. For d = 3−2ǫ, the order l = 0 requires evaluating
Γ(− 1

2 + ǫ) and ζ(−1 + 2ǫ); l = 1 requires evaluating Γ(1
2 + ǫ) and ζ(1 + 2ǫ); and l = 2 requires

evaluating Γ(3
2 + ǫ) and ζ(3+2ǫ). We give some more details in Sec. 2.7 and in Exercise 3. In any

case, a straightforward computation yields

I ′(m, T ) =
T 2

12
− 2m2

(4π)2
µ−2ǫ

[

1

2ǫ
+ ln

(

µ̄eγE

4πT

)]

+
2m4ζ(3)

(4π)4T 2
+ O

(

m6

T 4

)

+ O(ǫ) . (2.90)

Adding the zero-mode contribution, Eq. (2.85), we get

I(m, T ) =
T 2

12
− mT

4π
− 2m2

(4π)2
µ−2ǫ

[

1

2ǫ
+ ln

(

µ̄eγE

4πT

)]

+
2m4ζ(3)

(4π)4T 2
+ O

(

m6

T 4

)

+ O(ǫ) . (2.91)

Subtracting Eq. (2.73), finally yields

IT (m) =
T 2

12
− mT

4π
− 2m2

(4π)2

[

ln

(

meγE

4πT

)

− 1

2

]

+
2m4ζ(3)

(4π)4T 2
+ O

(

m6

T 4

)

+ O(ǫ) . (2.92)

Note how the divergences and µ̄ have cancelled from IT (m), as must be the case.

We can now transport these results to various versions of the function J , by making use of
Eqs. (2.80) and (2.82). From Eq. (2.90), we get

J ′(m, T ) = −π2T 4

90
+

m2T 2

24
− m4

2(4π)2

[

1

2ǫ
+ ln

(

µ̄eγE

4πT

)]

+
m6ζ(3)

3(4π)4T 2
+ O

(

m8

T 4

)

+ O(ǫ) . (2.93)

Adding the zero-mode contribution from Eq. (2.86) leads to

J(m, T ) = −π2T 4

90
+

m2T 2

24
− m3T

12π
− m4

2(4π)2

[

1

2ǫ
+ ln

(

µ̄eγE

4πT

)]

+
m6ζ(3)

3(4π)4T 2
+ O

(

m8

T 4

)

+ O(ǫ) .

(2.94)
Subtracting the zero-temperature part, J0(m) in Eq. (2.72), leads finally to the expansion for
JT (m), given in Eq. (2.81). Note again the cancellation of 1/ǫ and µ̄ from JT (m). The numerical
convergence of the high-temperature expansion is inspected in Exercise 3.
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2.7. Properties of the Euler gamma and Riemann zeta functions

Γ(s)

The function Γ(s) is to be viewed as a complex function, with a complex argument s. For
Re(s) > 0, it can be defined as

Γ(s) =

∫ ∞

0

dxxs−1e−x , (2.95)

while for Re(s) ≤ 0, the values can be obtained through iterative use of the relation

Γ(s) =
Γ(s + 1)

s
. (2.96)

On the real axis, Im(s) = 0, Γ(s) is regular at s = 1; as a consequence of Eq. (2.96), it then has
first order poles at s = 0,−1,−2, ... .

In practical applications, the argument s is typically either close to an integer, or close to a
half integer. In the former case, we can use Eq. (2.96) to relate the desired value to the values of
Γ(s) and its derivatives around s = 1; these can then be worked out from the convergent integral
representation in Eq. (2.95). In particular,

Γ(1) = 1 , Γ′(1) = −γE , (2.97)

where γE is the Euler constant, γE = 0.577215664901... . In the latter case, we can use Eq. (2.96)
to relate the desired value to the value of Γ(s) and its derivatives around s = 1

2 ; these can then
be worked out from the convergent integral representation in Eq. (2.95). In particular,

Γ
(1

2

)

=
√

π , Γ′
(1

2

)

=
√

π(−γE − 2 ln 2) . (2.98)

The values required for Eq. (2.90) thus become

Γ
(

−1

2
+ ǫ

)

= −2
√

π + O(ǫ) , (2.99)

Γ
(1

2
+ ǫ

)

=
√

π
[

1 − ǫ(γE + 2 ln 2) + O(ǫ2)
]

, (2.100)

Γ
(3

2
+ ǫ

)

=

√
π

2
+ O(ǫ) . (2.101)

We have gone one order deeper in the middle one, because the result turns out to be multiplied
by 1/ǫ (cf. Eq. (2.111)).

ζ(s)

The function ζ(s) is to be viewed as a complex function, with a complex argument s. For
Re(s) > 1, it can be defined as

ζ(s) =
∞
∑

n=1

n−s =
1

Γ(s)

∫ ∞

0

dxxs−1

ex − 1
. (2.102)

The equivalence of the two forms in Eq. (2.102) can be seen by writing 1/(ex − 1) = e−x/(1 −
e−x) =

∑∞
n=1 e−nx, and using the definition of the gamma function in Eq. (2.95). The remarkable

properties of ζ(s) follow from the fact that by writing

1

ex − 1
=

1

(ex/2 − 1)(ex/2 + 1)
=

1

2

[

1

ex/2 − 1
− 1

ex/2 + 1

]

, (2.103)
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and then substituting integration variables, x → 2x, we find an alternative integral representation
for ζ(s),

ζ(s) =
1

(1 − 21−s)Γ(s)

∫ ∞

0

dxxs−1

ex + 1
. (2.104)

The integral here is defined for Re(s) > 0. Moreover, even though it diverges at s → 0, the function
Γ(s) also diverges at the same point, and consequently ζ(0) will be finite and regular around s = 0:

ζ(0) = −1

2

[

= “

∞
∑

n=1

”!

]

, (2.105)

ζ′(0) = −1

2
ln(2π) . (2.106)

Finally, for Re(s) ≤ 0, an analytic continuation is obtained through

ζ(s) = 2sπs−1 sin
(πs

2

)

Γ(1 − s)ζ(1 − s) . (2.107)

On the real axis, Im(s) = 0, ζ(s) has a pole only at s = 1. Its values at even arguments are
“easy”; in fact, at negative even integers, Eq. (2.107) implies that

ζ(−2n) = 0 , n = 1, 2, 3, ... , (2.108)

while at positive even integers the values can be related to the Bernoulli numbers,

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ... . (2.109)

Negative odd integers can be related to the positive even ones through Eq. (2.107), which equation
also allows to determine the behaviour around the pole at s = 1. In contrast, odd positive integers
larger that unity, i.e. s = 3, 5, ..., yield new transcendental numbers.

The values required for Eq. (2.90) become

ζ(−1 + 2ǫ) = − 1

2π2
Γ(2)ζ(2) + O(ǫ) = − 1

12
+ O(ǫ) , (2.110)

ζ(1 + 2ǫ) = 21+2ǫπ2ǫ
[

sin
(π

2

)

+ πǫ cos
(π

2

)]

(

− 1

2ǫ

)

Γ(1 − 2ǫ)ζ(−2ǫ)

= 2(1 + 2ǫ ln 2)(1 + 2ǫ lnπ)(1)

(

− 1

2ǫ

)

(1 + 2ǫγE)

(

−1

2

)

(1 − 2ǫ ln 2π) + O(ǫ)

=
1

2ǫ
+ γE + O(ǫ) , (2.111)

ζ(3 + 2ǫ) = ζ(3) + O(ǫ) ≈ 1.2020569031...+ O(ǫ) , (2.112)

where in the first two cases we made use of Eq. (2.107), and in the second also of Eqs. (2.105),
(2.106).

26



2.8. Exercise 3

(a) Complete the derivation leading to Eq. (2.90).

(b) Inspecting JT (m), Eq. (2.81), sketch the regimes where the low-temperature and high-
temperature expansions are numerically accurate.

Solution

(a) For the term l = 0 in Eq. (2.89), we make use of the values in Eqs. (2.99), (2.110):

I ′(m, T )|l=0 = 2T
1

(4π)3/2
(2πT )

−2
√

π

1

(

− 1

12

)

+ O(ǫ) =
T 2

12
+ O(ǫ) . (2.113)

For the term l = 1 in Eq. (2.89), we make use of the values in Eqs. (2.100), (2.111):

I ′(m, T )|l=1 = 2T
(4π)ǫ

(4π)3/2
(2πT )1−2ǫ

[ −m2

(2πT )2

]√
π
[

1 − ǫ(γE + 2 ln 2)
] 1

2ǫ
(1 + 2ǫγE) + O(ǫ)

1=µ−2ǫµ2ǫ

= − m2

(4π)2
µ−2ǫ

{

1

ǫ
+ ln

µ2

T 2
+ ln(4π) − γE + 2[γE − ln(4π)]

}

+ O(ǫ)

= − m2

(4π)2
µ−2ǫ

{

1

ǫ
+ ln

µ̄2

T 2
+ 2 ln

(eγE

4π

)

}

+ O(ǫ) , (2.114)

where in the last step we introduced the MS scheme scale parameter through Eq. (2.71). For the
term l = 2 in Eq. (2.89), we make use of the values in Eqs. (2.101), (2.112):

I ′(m, T )|l=2 = 2T
1

(4π)3/2
(2πT )

m4

(2πT )4

1
2

√
π

2
ζ(3) + O(ǫ) =

2m4ζ(3)

(4π)4T 2
+ O(ǫ) . (2.115)

(b) We again denote y ≡ m/T , and inspect then the function

J (y) ≡ JT (m)

T 4
=

1

2π2

∫ ∞

0

dxx2 ln
(

1 − e−
√

x2+y2

)

. (2.116)

Apart from evaluating this expression numerically, we also consider the low-temperature result
from Eq. (2.78),

J (y)
y≫1≈ −

(

y

2π

)
3

2

e−y + O(ǫ) , (2.117)

as well as the high-temperature result from Eq. (2.81),

J (y)
y≪1≈ = −π2

90
+

y2

24
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12π
− y4

2(4π)2

[

ln

(

yeγE

4π

)

− 3

4

]

+
y6ζ(3)

3(4π)4
+ O(ǫ) . (2.118)

The results of the comparison are shown in Fig. 1. We observe that if we keep terms up to y6 in
the high-temperature expansion, its numerical convergence is reasonable for y <∼ 3. On the other
hand, the low-temperature expansion converges reasonably well as soon as y >∼6. In between, a
numerical evaluation is needed.
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