
2.3. Evaluation of thermal sums

Due to the previously established equality between Eqs. (2.19), (2.20), we have arrived at two
different representations for the free energy density of free scalar field theory, Eqs. (2.24), (2.26).
The purpose of this section is to take the step from Eq. (2.24) to (2.26) directly, and learn on the
way how to carry out thermal sums such as those in Eq. (2.24) also in more general cases.

In fact, the very sum in Eq. (2.24) is a somewhat special case: it includes a “physical term”,
the first one, which depends on the energy (and thus on the mass of the scalar particle); as well
as “unphysical” subtractions, the second and third terms, which are independent of the energy,
but are needed in order to make the sum convergent. Only the result from energy-dependent term
“survives” in Eq. (2.26). In order not to lose focus on the peculiarities of this special case, we will
mostly concentrate on another, convergent sum:

i(E) ≡ 1

E

dj(E)

dE
= T

∑

ωn

1

ω2
n + E2

, (2.27)

from which the first term appearing in Eq. (2.24),

j(E) ≡ T
∑

ωn

1

2
ln(ω2

n + E2) , (2.28)

can be obtained by integration with respect to E, apart from an integration constant, which should
be chosen according to the 2nd and 3rd terms in Eq. (2.24).

To begin with, we want to be completely general. Let f(p) be a function which is analytic in the
complex plane, and regular on the real axis. We then consider the sum

S ≡ T
∑

ωn

f(ωn) . (2.29)

Consider now the auxiliary function

i nB(ip) ≡ i

exp(iβp) − 1
. (2.30)

This function has poles at iβp = 2πn, n ∈ Z, i.e. p = ωn. Expanding in Laurent series around any
pole we get

i nB(i[ωn + z]) =
i

exp(iβ[ωn + z]) − 1
=

i

exp(iβz) − 1
≈ T

z
+ O(1) . (2.31)

Therefore, the residue at any pole is T . This means that we can replace the sum in Eq. (2.29) by
a complex integral:

S =

∮

dp

2πi
f(p) inB(ip) ≡

∫ +∞−i0+

−∞−i0+

dp

2π
f(p)nB(ip) +

∫ −∞+i0+

+∞+i0+

dp

2π
f(p)nB(ip) , (2.32)

where, as indicated, the integration contour runs clockwise around the real axis of the complex
p-plane.

In the latter term in Eq. (2.32), we can furthermore substitute integration variables as p → −p,
and note that

nB(−ip) =
1

exp(−iβp) − 1
=

exp(iβp) − 1 + 1

1 − exp(iβp)
= −1 − nB(ip) . (2.33)
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We thereby get the final formula

S =

∫ +∞−i0+

−∞−i0+

dp

2π

{

f(−p) + [f(p) + f(−p)]nB(ip)
}

=

∫ +∞

−∞

dp

2π
f(p) +

∫ +∞−i0+

−∞−i0+

dp

2π
[f(p) + f(−p)]nB(ip) , (2.34)

where in the first term we were able to return to the real axis (because there are no singularities
there), and substitute once again p → −p. Thus we have managed to convert the sum in Eq. (2.29)
to a complex integral.

The first term in Eq. (2.34) is temperature-independent: it gives the zero-temperature “vacuum”
contribution. The latter term determines how thermal effects change the result.

As a technical point let us note, furthermore, that in the lower half plane,

|nB(ip)| p=x−iy
=

∣

∣

∣

∣

1

eiβxeβy − 1

∣

∣

∣

∣

y≫T≈ e−βy y≫x≈ e−β|p| . (2.35)

Therefore, if the function f(p) grows slower than eβ|p| at large |p| (in particular, polynomially), the
integration contour can be closed in the lower half plane, and the result is determined by the pole
locations and residues of the function f(p) + f(−p). Physically, we therefore say that the thermal
contribution to S is related to “on-shell” particles.

Let us now apply the general formula in Eq. (2.34) to the particular example of Eq. (2.27). In
fact, without any additional cost, we can consider a slight generalization,

i(E; c) ≡ T
∑

ωn

1

(ωn + c)2 + E2
, c ∈ C . (2.36)

In terms of Eq. (2.29), we then have

f(p) =
1

(p + c)2 + E2
=

i

2E

[

1

p + c + iE
− 1

p + c − iE

]

(2.37)

f(p) + f(−p) =
i

2E

[

1

p + c + iE
+

1

p − c + iE
− 1

p + c − iE
− 1

p − c − iE

]

. (2.38)

For Eq. (2.34), we need the poles in the lower half plane; for | Im c| < E, these are at p = ±c− iE.
According to Eq. (2.38), the residue at each pole is i/2E. The vacuum term in Eq. (2.34) then
produces

1

2π
(−2πi)

i

2E
=

1

2E
, (2.39)

while the matter part yields

1

2π
(−2πi)

i

2E

[

1

eβ(E−ic) − 1
+

1

eβ(E+ic) − 1

]

. (2.40)

In total, then,

i(E; c) =
1

2E

[

1 + nB(E − ic) + nB(E + ic)
]

. (2.41)

We note, first of all, that the result is periodic in c → c + 2πTn, n ∈ Z, as it must be according to
Eq. (2.36); and that the appearance of ic resembles that of a chemical potential. Indeed, as we will
see in Exercise 2, setting ic → µ corresponds to a situation where we have averaged over a particle
(chemical potential µ) and an antiparticle (chemical potential −µ.)
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To conclude this section, let us integrate the result of Eq. (2.41) with respect to E, in order to
obtain a generalization of the function in Eq. (2.28),

j(E; c) ≡ T
∑

ωn

1

2
ln[(ωn + c)2 + E2] . (2.42)

The relation given in Eq. (2.27) continues to hold in the presence of c. Noting that

1

ex − 1
=

e−x

1 − e−x
=

d

dx

(

1 − e−x
)

, (2.43)

we immediately get

j(E; c) = const. +
E

2
+

T

2

{

ln
[

1 − e−β(E−ic)
]

+
[

1 − e−β(E+ic)
]

}

, (2.44)

where the constant can depend on T and c.

Setting now c = 0, and comparing with Eqs. (2.24), (2.26), we notice that we have been lucky:
the extra terms in Eq. (2.24) are such that they precisely cancel against the integration constant
in Eq. (2.44). So, the full physical result containing j(E; 0) can be deduced directly from i(E; 0).
That the same is true even for µ ≡ ic 6= 0, if we interpret j(E; c) as a free energy density averaged
over a particle and an antiparticle (in a harmonic oscillator potential, i.e. a free field), is shown in
Exercise 2.
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2.4. Exercise 2

Compute the partition function of the harmonic oscillator in the presence of a chemical potential,

e−βF (T,µ) ≡ Z(T, µ) ≡ Tr
[

e−β(Ĥ−µN̂)
]

, (2.45)

and show that the expression
1

2

[

F (T, ic) + F (T,−ic)
]

(2.46)

agrees with the E-dependent part of Eq. (2.44).

Solution to Exercise 2

Trivially,

〈n|(Ĥ − µN̂)|n〉 = ~ω
(

n +
1

2

)

− µn = (~ω − µ)n +
~ω

2
. (2.47)

Evaluating the partition function in the energy basis yields

ZHO =

∞
∑

n=0

exp

(

−~ω

2T
− ~ω − µ

T
n

)

=
exp

(

−~ω
2T

)

1 − exp
(

−~ω−µ
T

) . (2.48)

Putting ~ → 1, ω → E, µ → ic, we can rewrite the result as

ZHO = exp

{

− 1

T

[

E

2
+ T ln

(

1 − e−
E−ic

T

)]}

. (2.49)

Reading from here F (T, µ) according to Eq. (2.45), and computing 1
2

[

F (T, ic)+F (T,−ic)
]

, yields

directly the E-dependent part of Eq. (2.44).
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2.5. Low-temperature expansion

Our next goal is to carry out the momentum integration in Eqs. (2.24), (2.26). We denote

J(m, T ) ≡
∫

ddk

(2π)d

[

Ek

2
+ T ln

(

1 − e−βEk

)

]

(2.50)

= T
∑

ωn

∫

ddk

(2π)d

[

1

2
ln(ω2

n + E2
k) − const.

]

, (2.51)

I(m, T ) ≡ 1

m

d

dm
J(m, T ) (2.52)

=

∫

ddk

(2π)d

1

2Ek

[

1 + 2nB(Ek)
]

(2.53)

= T
∑

ωn

∫

ddk

(2π)d

1

ω2
n + E2

k

, (2.54)

where d is the space dimension, Ek =
√

k2 + m2, and we made use of the fact that m−1d/dm =
E−1

k
d/dEk. In order to simplify the notation in the following, we will denote

∑

∫

K̃

≡ T
∑

ωn

∫

ddk

(2π)d
,

∑

∫ ′

K̃

≡ T
∑

ω′

n

∫

ddk

(2π)d
,

∫

k

≡
∫

ddk

(2π)d
, (2.55)

where K̃ ≡ (ωn,k), and a prime denotes that the zero-mode is omitted. The tilde in K̃ is a
reminder for Euclidean metric.

At low temperatures, T ≪ m, we expect that the results resemble those of the zero-temperture
theory. Therefore we can write

J(m, T ) = J0(m) + JT (m) , I(m, T ) = I0(m) + IT (m) , (2.56)

where J0 is the temperature-independent vacuum energy density,

J0(m) ≡
∫

k

Ek

2
, (2.57)

and JT is the thermal part of the free energy density,

JT (m) ≡
∫

k

T ln
(

1 − e−βEk

)

. (2.58)

The sum-integral I(m, T ) can be divided in a similar way. It is clear that J0(m) is ultraviolet
divergent, and can only be evaluated in the presence of a regularization; as indicated by Eq. (2.55),
we will mostly be employing dimensional regularization here. In contrast, the integrand in JT is
exponentially small for |k| ≫ T , and therefore the integral is well convergent.

Let us start by evaluating J0(m). Writing the mass dependence explicitly, the task is to evaluate

J0(m) =

∫

ddk

(2π)d

1

2
(k2 + m2)

1
2 , (2.59)

and subsequently insert d = 3−2ǫ. For generality and future reference, we will in fact first compute

F (m, d, A) ≡
∫

ddk

(2π)d

1

(k2 + m2)A
, (2.60)

and obtain then J0 as J0(m) = 1
2 F (m, d,− 1

2 ).
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Since the integrand only depends on |k|, angular integrations can be carried out, and the inte-
gration measure obtains the known form2

ddk =
πd/2

Γ(d/2)
(k2)

d−2

2 d(k2) , (2.61)

where Γ(s) is the Euler gamma function (we reiterate some of its basic properties in Sec. 2.7).
Substituting k2 → z → m2t in Eq. (2.60), we get

F (m, d, A) =
πd/2

Γ(d/2)

1

(2π)d

∫ ∞

0

dz z
d−2

2 (z + m2)−A

=
md−2A

(4π)d/2Γ(d/2)

∫ ∞

0

dt td/2−1(1 + t)−A . (2.62)

A further substitution t → 1/s − 1, dt → −ds/s2 yields

F (m, d, A) =
md−2A

(4π)d/2Γ(d/2)

∫ 1

0

ds sA−d/2−1(1 − s)d/2−1 . (2.63)

We now recognize a standard integral that can be expressed in terms of the gamma function:

F (m, d, A) =

∫

ddk

(2π)d

1

(k2 + m2)A
=

1

(4π)d/2

Γ(A − d/2)

Γ(A)

1

(m2)A−d/2
. (2.64)

We now return to J0(m) in Eq. (2.59), i.e. set A = − 1
2 , d = 3−2ǫ, A− d

2 = −2+ ǫ in Eq. (2.64),
and multiply by 1

2 . The basic property Γ(s) = s−1Γ(s+1) allows to transport the argument of the
gamma function to the vicinity of 1/2 or 1, where a Taylor expansion is easily carried out (basic
formulae can be found in Sec. 2.7):

Γ(−2 + ǫ) =
1

(−2 + ǫ)(−1 + ǫ)ǫ
Γ(1 + ǫ) (2.65)

=
1

2ǫ

(

1 +
ǫ

2

)(

1 + ǫ
)

(1 − γEǫ) + O(ǫ) , (2.66)

Γ(−1

2
) = −2Γ(

1

2
) = −2

√
π . (2.67)

The other parts of Eq. (2.64) are written as

(4π)−
3
2

+ǫ =
2
√

π

(4π)2

[

1 + ǫ ln(4π)
]

+ O(ǫ2) , (2.68)

(m2)2−ǫ = m4µ−2ǫ

(

µ2

m2

)ǫ

= m4µ−2ǫ

(

1 + ǫ ln
µ2

m2

)

+ O(ǫ2) , (2.69)

where µ is an arbitrary scale parameter, introduced as 1 = µ−2ǫµ2ǫ.

Collecting now everything together, we get

J0(m) = − m4

64π2
µ−2ǫ

[

1

ǫ
+ ln

µ2

m2
+ ln(4π) − γE +

3

2
+ O(ǫ)

]

. (2.70)

It is convenient at this point to introduce the MS scheme scale parameter µ̄, through

ln µ̄2 ≡ lnµ2 + ln(4π) − γE . (2.71)

2On one hand,
R

ddk exp(−tk2) = [
R

∞

−∞
dk1 exp(−tk2

1
)]d = (π/t)d/2. On the other,

R

ddk exp(−tk2) =

c(d)
R

∞

0
dk kd−1 exp(−tk2) = c(d)t−d/2

R

∞

0
dx xd−1e−x2

= c(d)Γ(d/2)/2td/2 . Thereby c(d) = 2πd/2/Γ(d/2).
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Thereby

J0(m) = −m4µ−2ǫ

64π2

[

1

ǫ
+ ln

µ̄2

m2
+

3

2
+ O(ǫ)

]

. (2.72)

For I0(m), we obtain from Eqs. (2.52), (2.72) the expression

I0(m) =

∫

k

1

2Ek

= −m2µ−2ǫ

16π2

[

1

ǫ
+ ln

µ̄2

m2
+ 1 + O(ǫ)

]

. (2.73)

Incidentally, note that
∫ ∞

−∞dk0/(2π) × 1/(k2
0 + E2

k
) = 1/(2Ek), so that I0(m) can also be written

as

I0(m) =

∫

dd+1k

(2π)d+1

1

k2 + m2
. (2.74)

We then move to the finite-temperature parts, JT (m) and IT (m). As already mentioned, the cor-
responding integrals are finite. Therefore, we can normally set d = 3 to begin with.3 Substituting
|k| → Tx in Eq. (2.58), and taking the derivative in Eq. (2.52), we find

JT (m) =
T 4

2π2

∫ ∞

0

dxx2 ln
(

1 − e−
√

x2+y2
)

y≡m/T
, (2.75)

IT (m) =
T 2

2π2

∫ ∞

0

dxx2

√

x2 + y2

1

e
√

x2+y2 − 1

∣

∣

∣

∣

∣

y≡m/T

. (2.76)

Unfortunately, these integrals cannot be expressed in terms of elementary functions. In retrospec-
tive, though, this may even be “understandable”: as we will see, they contain so much important
physics that it would be unrealistic to find it in any simple well-behaved analytic function! At the
same time, Eqs. (2.75), (2.76) can of course be numerically evaluated without problems.

Even though Eq. (2.75) cannot be evaluated exactly, we can still find approximate expression
valid in various limit. In this section we are interested in low temperatures, i.e. y = m/T ≫ 1. Let
us thus evaluate the leading term of Eq. (2.75) in an expansion in exp(−y) and 1/y. We can write
∫ ∞

0

dxx2 ln
(

1 − e−
√

x2+y2
)

= −
∫ ∞

0

dxx2 e−
√

x2+y2

+ O(e−2y)

w≡
√

x2+y2

= −
∫ ∞

y

dw w
√

w2 − y2e−w + O(e−2y)

v≡w−y
= −e−y

∫ ∞

0

dv(v + y)
√

2vy + v2e−v + O(e−2y)

= −
√

2y
3
2 e−y

∫ ∞

0

dv v
1
2

(

1 +
v

y

)(

1 +
v

2y

)
1
2

e−v + O(e−2y)

= −
√

2Γ(
3

2
)y

3
2 e−y

[

1 + O
(1

y

)

+ O
(

e−y
)]

, (2.77)

where Γ(3/2) =
√

π/2.

Inserting into Eq. (2.58), we thus obtain

JT (m) = −T 4

(

m

2πT

)
3
2

e−
m

T

[

1 + O
(

T

m

)

+ O
(

e−m/T

)]

. (2.78)

The derivative in Eq. (2.52) subsequently yields

IT (m) =
T 3

m

(

m

2πT

)
3
2

e−
m

T

[

1 + O
(

T

m

)

+ O
(

e−m/T

)]

. (2.79)

3In multiloop computations, JT (m) or IT (m) could get multiplied by a divergent term, 1/ǫ, in which case
contributions of O(ǫ) would be needed as well. They could then be obtained by noting from Eq. (2.61) that
µ2ǫdd

k/(2π)d = {1 + ǫ[ln(µ̄2/4k2) + 2] + O(ǫ2)}d3
k/(2π)3, for d = 3 − 2ǫ and an integrand only depending on k

2.
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