
2. Free scalar fields

2.1. Path integral for the partition function

We start by deriving a path integral representation for scalar field theory, by making use of the
result obtained for the quantum mechanical harmonic oscillator (HO) in the previous section.

In quantum field theory, the form of the theory is most economically defined in terms of the
corresponding classical Lagrangian LM , rather than the Hamiltonian Ĥ (for instance, Lorentz
symmetry is explicit only in LM ). Let us therefore start from Eq. (1.7), and re-interpret x as an
“internal” degree of freedom φ, situated at the origin 0 of d-dimensional space, like in Eq. (1.11):

SHO
M =

∫

dtLHO
M , (2.1)

LHO
M =

m

2

(

∂φ(t,0)

∂t

)2

− V (φ(t,0)) . (2.2)

Let us compare this with the usual action of scalar field theory (SFT) in d-dimensional space:

SSFT
M =

∫

dt

∫

ddxLSFT
M , (2.3)

LSFT
M =

1

2
∂µφ∂µφ − V (φ) =

1

2
(∂tφ)2 −

1

2
(∂iφ)(∂iφ) − V (φ) , (2.4)

where we assume that repeated indices are summed over (irrespective of whether they are up and
down, or both at the same altitude), and the metric is (+−−−).

Comparing Eq. (2.2) with Eq. (2.4) we see that formally, scalar field theory is nothing but a
collection (sum) of almost independent harmonic oscillators with m = 1, one at every x. These
oscillators only interact via the derivative term (∂iφ)(∂iφ) which, in the language of statistical
physics, couples nearest neighbours:

∂iφ ≈
φ(t,x + ǫ̂i) − φ(t,x)

ǫ
, (2.5)

where î is a unit vector in the direction i.

We then realise, however, that such a coupling does not change the derivation of the path
integral (for the partition function) in Sec. 1.3 in any essential way: it was only important that
the Hamiltonian was quadratic in the canonical momenta, p = mẋ ↔ ∂tφ. In other words, the
derivation of the path integral is only concerned with objects having to do with the time coordinate
(or time derivatives), and these appear identically in Eqs. (2.2) and (2.4). Therefore, we can directly
take over the result from Eqs. (1.41)–(1.44):

ZSFT(T ) =

∫

φ(β~,x)=φ(0,x)

∏

x

[ C Dφ(τ,x) ] exp

[

−
1

~

∫ β~

0

dτ

∫

ddxLSFT
E

]

, (2.6)

LSFT
E = −LSFT

M (t → −iτ) =
1

2

(

∂φ

∂τ

)2

+

d
∑

i=1

1

2

(

∂φ

∂xi

)2

+ V (φ) . (2.7)

We will drop out the superscript SFT in the following and also, for brevity, mostly write LE in
the form LE = 1

2 ∂µφ∂µφ + V (φ).
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2.2. Fourier representation

We now parallel the strategy in Sec. 1.4, and rewrite the path integral in Fourier representation. In
order to simplify the notation somewhat, we measure time in units where ~ = 1.05× 10−34 Js = 1.
Then the dependence of τ can be expressed as

φ(τ,x) = T
∞
∑

n=−∞

φ̃(ωn,x)eiωnτ , ωn = 2πTn , n ∈ Z . (2.8)

For the space coordinates, it is useful to momentarily take each direction finite, of extent Li, and
impose periodic boundary conditions, just like for the time direction. Then the dependence on xi

can be represented as

f(xi) =
1

Li

∞
∑

ni=−∞

f̃(ni)e
ikixi , ki =

2πni

Li

, ni ∈ Z , (2.9)

where 1/Li plays the same role as T in the time direction. In the infinite volume limit, the sum in
Eq. (2.9) goes over to the usual Fourier integral,

1

Li

∑

ni

=
1

2π

∑

ni

∆ki
Li→∞
−→

∫

dki

2π
, (2.10)

so that the finite volume is really just an intermediate regulator. The whole function in Eq. (2.8)
now becomes

φ(τ,x) = T
∑

ωn

1

V

∑

k

φ̃(ωn,k)eiωnτ+ik·x , V ≡ L1L2...Ld . (2.11)

Like in Sec. 1.4, the reality of φ(τ,x) implies that the Fourier modes satisfy

[

φ̃(ωn,k)
]∗

= φ̃(−ωn,−k) . (2.12)

Thereby only half of the Fourier-modes are independent; we can choose, for instance,

φ̃(ωn,k) , n ≥ 1 ; φ̃(0,k) , k1 > 0 ; φ̃(0, 0, k2, ...) , k2 > 0 ; . . . ; and φ̃(0,0) (2.13)

as the integration variables. Note again the presence of a zero-mode.

Quadratic forms can be written as

∫ β

0

dτ

∫

ddxφ1(τ,x)φ2(τ,x) = T
∑

ωn

1

V

∑

k

φ̃1(−ωn,−k)φ̃2(ωn,k) . (2.14)

In particular, in the free case, i.e. for V (φ) ≡ 1
2 m2φ2, the exponent in Eq. (2.6) becomes

exp(−SE) = exp
(

−

∫ β

0

dτ

∫

ddxLE

)

= exp

[

−
1

2
T

∑

ωn

1

V

∑

k

(ω2
n + k2 + m2)|φ̃(ωn,k)|2

]

=
∏

k

{

exp

[

−
T

2V

∑

ωn

(ω2
n + k2 + m2)|φ̃(ωn,k)|2

]}

. (2.15)
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The exponential here is precisely the same as the one in Eq. (1.75), with the replacements

m(HO) →
1

V
, ω2(HO) → k2 + m2 , |x2

n|
(HO)

→ |φ̃(ωn,k)|2 . (2.16)

The result thus factorises into a product of harmonic oscillator partition functions, for which we
know the answer already. In fact, rewriting Eqs. (1.54), (1.59), (1.18) for the case ~ = 1, the
harmonic oscillator partition function can be represented as

ZHO = C′

∫





∏

n≥0

dxn



 exp

[

−
mT

2

∞
∑

n=−∞

(ω2
n + ω2)|xn|

2

]

(2.17)

=
T

ω

∞
∏

n=1

ω2
n

ω2 + ω2
n

(2.18)

= T

∞
∏

n=−∞

(ω2
n + ω2)−

1

2

∞
∏

n′=−∞

(ω2
n)

1

2 (2.19)

= exp

{

−
1

T

[

ω

2
+ T ln

(

1 − e−βω
)

]}

, (2.20)

where n′ means that the zero-mode n = 0 is omitted. Note in particular that all dependence on
m(HO) has dropped out.

Combining Eq. (2.15) with Eqs. (2.17)–(2.20), we obtain two useful representations for ZSFT.
First of all, denoting

Ek ≡
√

k2 + m2 , (2.21)

Eq. (2.19) yields

ZSFT = exp

(

−
F SFT

T

)

=
∏

k

{

T
∏

n

(ω2
n + E2

k
)−

1

2

∏

n′

(ω2
n)

1

2

}

(2.22)

= exp

{

∑

k

[

lnT +
1

2

∑

n′

lnω2
n −

1

2

∑

n

ln(ω2
n + E2

k)

]}

. (2.23)

Taking then the infinite-volume limit, the free-energy density, F/V , can be written as

lim
V →∞

F SFT

V
=

∫

ddk

(2π)d

[

T
∑

ωn

1

2
ln(ω2

n + E2
k
) − T

∑

ω′

n

1

2
ln(ω2

n) − T
1

2
ln(T 2)

]

. (2.24)

Second, making directly use of Eq. (2.20), we get

ZSFT = exp

(

−
F SFT

T

)

=
∏

k

{

exp

[

−
1

T

(

Ek

2
+ T ln

(

1 − e−βEk

)

)]}

, (2.25)

lim
V →∞

F SFT

V
=

∫

ddk

(2π)d

[

Ek

2
+ T ln

(

1 − e−βEk

)

]

. (2.26)

We will return to the evaluation of the momentum integration in Secs. 2.5 and 2.6.
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