
1.4. Evaluation of the path integral for harmonic oscillator

As a “crosscheck”, we would now like to evaluate the path integral in Eq. (1.41) for the case
of a harmonic oscillator, and check that we get the correct result in Eq. (1.17). To make the
exercise more interesting, we carry out the evaluation in Fourier space (with respect to the time
coordinate τ) rather than in configuration space. Moreover, we would like to see if we can deduce
the information contained in the divergent constant C without making use of its actual value in
Eq. (1.40).

Let us start by representing an arbitrary function x(τ), 0 < τ < β~, with the property x(β~) =
x(0), as a Fourier sum:

x(τ) ≡ T

∞
∑

n=−∞

xneiωnτ , (1.45)

where the factor T is a convention. Periodicity requires

eiωnβ~ = 1 , i.e. ωnβ~ = 2πn , n ∈ Z . (1.46)

The values ωn = 2πTn/~ are called Matsubara frequencies.

Apart from periodicity, we also impose reality on x(τ):

x(τ) ∈ R ⇒ x∗(τ) = x(τ) ⇒ x∗
n = x−n . (1.47)

If we write xn = an + ibn, it follows that

x∗
n = an − ibn = x−n = a−n + ib−n ⇒

{

a−n = an

b−n = −bn
(1.48)

In particular, b0 = 0, and x−nxn = a2
n + b2

n. Thereby, we now have the representation

x(τ) = T

{

a0 +
∞
∑

n=1

[

(an + ibn)eiωnτ + (an − ibn)e−iωnτ

]}

. (1.49)

Here, a0 is called (the amplitude of) the Matsubara zero-mode.

With the representation of Eq. (1.49), general quadratic structures in configuration space can be
written as

1

~

∫ β~

0

dτ x(τ)y(τ) = T 2
∑

m,n

xnym
1

~

∫ β~

0

dτ ei(ωn+ωm)τ

= T 2
∑

m,n

xnym
1

T
δn,−m = T

∑

n

xny−n . (1.50)

In particular, the argument of the exponential in Eq. (1.41) becomes

−1

~

∫ β~

0

dτ
m

2

[

dx(τ)

dτ

dx(τ)

dτ
+ ω2x(τ)x(τ)

]

Eq. (1.50)
= −mT

2

∞
∑

n=−∞

xn

[

iωn iω−n + ω2
]

x−n

ω
−n=−ωn

= −mT

2

∞
∑

n=−∞

(ω2
n + ω2)(a2

n + b2
n)

= −mT

2
ω2a2

0 − mT

∞
∑

n=1

(ω2
n + ω2)(a2

n + b2
n) . (1.51)
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Next, we need to consider the integration measure. Let us make a change of variables from x(τ),
τ ∈ (0, β~), to the Fourier components an, bn. As we have seen, the independent variables are then
a0 and {an, bn}, n ≥ 1.

This change of variables introduces a determinant,

Dx(τ) =

∣

∣

∣

∣

det

[

δx(τ)

δxn

]∣

∣

∣

∣

da0

[

∏

n≥1

dan dbn

]

. (1.52)

The change of bases is purely kinematical, however, and independent of the potential V (x). Thus
we can define

C′ ≡ C

∣

∣

∣

∣

det

[

δx(τ)

δxn

]∣

∣

∣

∣

, (1.53)

and consider now C′ as an unknown coefficient.

Making use of the gaussian integral
∫ ∞

−∞
dx exp(−cx2) =

√

π/c, the expression in Eq. (1.41) now
becomes

Z = C′

∫ ∞

−∞

da0

∫ ∞

−∞

[

∏

n≥1

dan dbn

]

exp

[

−1

2
mTω2a2

0 − mT
∑

n≥1

(ω2
n + ω2)(a2

n + b2
n)

]

= C′

√

2π

mTω2

∞
∏

n=1

π

mT (ω2
n + ω2)

, ωn =
2πTn

~
. (1.54)

It remains to determine C′. How to do this?

• Since C′ is independent of ω, we can determine it in the limit ω = 0, whereby the system
simplifies.

• The integral over the zero-mode a0 in Eq. (1.54) is, however, divergent for ω → 0. We call
such a divergence an infrared divergence: the zero-mode is the lowest-energy mode.

• But we can still take ω → 0 if we momentarily regulate the integration over the zero-mode
in some other way. We note from Eq. (1.49) that

1

β~

∫ β~

0

dτ x(τ) = Ta0 , (1.55)

so that Ta0 represents the average value of x(τ). In terms of Eq. (1.31), we can identify the
average value with the “boundary condition” x, over which we integrate.

Let us then simply regulate the system by “putting it in a box”, i.e. by restricting the values
of x to some (asymptotially wide by finite) interval ∆x, and those of a0 to the interval ∆x/T .

With this setup, we can proceed to match for C′.

Side A: “effective theory computation”. In the presence of the regulator, Eq. (1.54) becomes

lim
ω→0

Zregulated = C′

∫

∆x/T

da0

∫ ∞

−∞

[

∏

n≥1

dan dbn

]

exp

[

−mT
∑

n≥1

ω2
n(a2

n + b2
n)

]

= C′ ∆x

T

∞
∏

n=1

π

mTω2
n

, ωn =
2πTn

~
. (1.56)
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Side B: “full theory computation”. In the presence of the regulator, and in the absence of
V (x), Eq. (1.31) can be computed in a very simple way:

lim
ω→0

Zregulated =

∫

∆x

dx 〈x|e− p̂2

2mT |x〉

=

∫

∆x

dx

∫ ∞

−∞

dp

2π~
〈x|e− p̂2

2mT |p〉〈p|x〉

=

∫

∆x

dx

∫ ∞

−∞

dp

2π~
e−

p2

2mT 〈x|p〉〈p|x〉

= ∆x
1

2π~

√
2πmT . (1.57)

Matching the two sides. Equating Eqs. (1.56) and (1.57), the regulator ∆x drops out, and we
find

C′ =
T

2π~

√
2πmT

∞
∏

n=1

mTω2
n

π
. (1.58)

Since the infrared regulator has dropped out, we may called C′ an “ultraviolet” coefficient.

Now we can continue with the full Eq. (1.54). Inserting C′ from Eq. (1.58), we get

Z =
T

~ω

∞
∏

n=1

1

1 + ω2

ω2
n

(1.59)

=
T

~ω

1
∏∞

n=1

[

1 + (~ω/2πT )2

n2

] . (1.60)

Making use of

sinhπx

πx
=

∞
∏

n=1

(

1 +
x2

n2

)

, (1.61)

then yields directly Eq. (1.17): the result is correct!

Thus, we have indeed managed to reproduce the correct result from the path integral, without
ever making recourse to Eq. (1.40) or, for that matter, to the discretization that was present in
Eqs. (1.36), (1.39).

Let us end with a couple of final remarks. First of all, in Quantum Mechanics, the partition func-
tion Z, and all other observables, are certainly finite and well-defined functions of the parameters
T, m, and ω, if computed properly. We saw that with path integrals this is not always obvious at
every intermediate step, but at the end does work out. In Quantum Field Theory, on the contrary,
divergences may remain, even if we compute everything correctly. These are then taken care of
by renormalization. It is important to realise, however, that the “ambiguity” of the functional
integration measure (through C′) is not in itself the source of these divergences, as our quantum
mechanical example has demonstrated!

As the second remark, it is appropriate to stress that in many physically relevant observables,
the coefficient C′ drops out completely, and the procedure is thereby simpler. An example of such
a quantity is discussed in Exercise 1.

As a final remark, it should be noted that many of the concepts and techniques that were
introduced with this simple example — zero-modes, infrared divergences, their regulation, matching
computations, etc — will also play a role in much less trivial quantum field theoretic examples
later on, so it is important to master them as early as possible.
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1.5. Exercise 1

Defining

x̂(τ) ≡ e
Ĥτ

~ x̂e−
Ĥτ
~ , 0 < τ < β~ , (1.62)

we define a “2-point Green’s function” as

G(τ) ≡ 1

ZTr
[

e−βĤ x̂(τ)x̂(0)
]

. (1.63)

The corresponding path integral reads

G(τ) =

∫

x(β~)=x(0)Dxx(τ)x(0) exp[−SE/~]
∫

x(β~)=x(0)Dx exp[−SE/~]
, (1.64)

whereby the coefficient C′ has dropped out. The task is to compute explicitly G(τ) for the harmonic
oscillator, by making use of

(a) the canonical formalism [expressing Ĥ , x̂ in terms of â, â†].

(b) the path integral formalism, in Fourier space.
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Solution to Exercise 1

(a) In terms of â, â†, we can write

Ĥ = ~ω
(

â†â +
1

2

)

, x̂ =

√

~

2mω
(â + â†) , [â, â†] = 1 . (1.65)

In order to construct x̂(τ), we make use of the expansion

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] +

1

3!
[Â, [Â, [Â, B̂]]] + ... . (1.66)

In particular,

[Ĥ, â] = ~ω[â†â, â] = −~ωâ ,

[Ĥ, [Ĥ, â]] = (−~ω)2â ,

[Ĥ, â†] = ~ω[â†â, â†] = ~ωâ† ,

[Ĥ, [Ĥ, â†]] = (~ω)2â† , (1.67)

and so forth, so that we can write

e
Ĥτ

~ x̂e−
Ĥτ

~ =

√

~

2mω

{

â

[

1 − ωτ +
1

2!
(ωτ)2 + ...

]

+ â†

[

1 + ωτ +
1

2!
(ωτ)2 + ...

]}

=

√

~

2mω

(

âe−ωτ + â†eωτ
)

. (1.68)

Inserting Z from Eq. (1.17), we then get

G(τ) = 2 sinh
(β~ω

2

)

∞
∑

n=0

〈n|e−β~ω(n+1

2
) ~

2mω

(

âe−ωτ + â†eωτ
)

(

â + â†
)

|n〉 . (1.69)

We now use â†|n〉 =
√

n + 1|n+1〉 and â|n〉 =
√

n|n− 1〉 to identify the non-zero matrix elements,

〈n|ââ†|n〉 = n + 1 , 〈n|â†â|n〉 = n . (1.70)

Thereby

G(τ) =
~

mω
sinh

(β~ω

2

)

exp
(

−β~ω

2

)

∞
∑

n=0

e−β~ωn
[

e−ωτ + n
(

e−ωτ + eωτ
)]

. (1.71)

The sums are simple,

∞
∑

n=0

e−β~ωn =
1

1 − e−β~ω
,

∞
∑

n=0

ne−β~ωn = − 1

β~

d

dω

1

1 − e−β~ω
=

e−β~ω

(1 − e−β~ω)2
. (1.72)

In total, then,

G(τ) =
~

2mω

(

1 − e−β~ω
)

[

e−ωτ 1

1 − e−β~ω
+

(

e−ωτ + eωτ
) e−β~ω

(1 − e−β~ω)2

]

=
~

2mω

1

1 − e−β~ω

[

e−ωτ + eω(τ−β~)
]

=
~

2mω

cosh
[(

β~

2 − τ
)

ω
]

sinh
[

β~ω
2

] . (1.73)
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(b) Integration measure:

C′

∫ ∞

−∞

da0

∫ ∞

−∞

[

∏

n≥1

dan dbn

]

. (1.74)

Exponential:

exp

[

−1

2
mTω2a2

0 − mT
∑

n≥1

(ω2
n + ω2)(a2

n + b2
n)

]

= exp

[

−1

2
T

∞
∑

n=−∞

m(ω2
n + ω2)|xn|2

]

. (1.75)

Fourier representation:

x(τ) = T

{

a0 +

∞
∑

k=1

[

(ak + ibk)eiωkτ + (ak − ibk)e−iωkτ

]}

, (1.76)

x(0) = T

{

a0 +

∞
∑

l=1

2al

}

. (1.77)

Observable:

G(τ) = 〈x(τ)x(0)〉 ≡
∫

da0

∫
∏

n≥1 dan dbn x(τ)x(0) exp[· · ·]
∫

da0

∫
∏

n≥1 dan dbn exp[· · ·] . (1.78)

Since the exponential is quadratic in a0, an, bn ∈ R, we have

〈a0ak〉 = 〈a0bk〉 = 〈akbl〉 = 0 , 〈akal〉 = 〈bkbl〉 ∝ δkl . (1.79)

Thereby

G(τ) = T 2

〈

a2
0 +

∞
∑

k=1

2a2
k

(

eiωkτ + e−iωkτ
)

〉

. (1.80)

Here

〈a2
0〉 =

∫

da0 a2
0 exp

(

− 1
2 mTω2a2

0

)

∫

da0 exp
(

− 1
2 mTω2a2

0

)

= − 2

mω2

d

dT

[

ln

∫

da0 exp

(

−1

2
mTω2a2

0

)]

= − 2

mω2

d

dT

[

ln

√

2π

mω2T

]

=
1

mω2T
, (1.81)

〈a2
k〉 =

∫

dak a2
k exp

[

−mT (ω2
k + ω2)a2

k

]

∫

dak exp [−mT (ω2
k + ω2)a2

k]

=
1

2m(ω2
k + ω2)T

. (1.82)

Inserting into Eq. (1.80), we get

G(τ) =
T

m

(

1

ω2
+

∞
∑

k=1

eiωkτ + e−iωkτ

ω2
k + ω2

)

=
T

m

∞
∑

k=−∞

eiωkτ

ω2
k + ω2

, (1.83)

where ωk = 2πkT/~.

There are various ways to evaluate the sum in Eq. (1.83). We will encounter one generic method
in the later sections, so let us here present a different approach. We start by noting that

(

− d2

dτ2
+ ω2

)

G(τ) =
T

m

∞
∑

k=−∞

eiωkτ =
~

m
δ(τ mod β~) , (1.84)
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where we made use of a standard summation formula.1

We now first solve Eq. (1.84) for 0 < τ < β~:

(

− d2

dτ2
+ ω2

)

G(τ) = 0 ⇒ G(τ) = Aeωτ + Be−ωτ , (1.85)

where A, B are unknown constants. The definition, Eq. (1.83), indicates that G(β~ − τ) = G(τ),
which allows to related A and B:

G(τ) = A
[

eωτ + eω(β~−τ)
]

. (1.86)

The remaining unknown A can be obtained by approaching the limit τ → 0+. Then, from (1.83),

G(0) = A
(

1 + eωβ~
)

=
T

m

∞
∑

k=−∞

1

ω2
k + ω2

=
T

m

~
2

(2πT )2

∞
∑

k=−∞

1

k2 +
(

~ω
2πT

)2

=
~

2mω

cosh
(

~ω
2T

)

sinh
(

~ω
2T

) , (1.87)

where we made use of
∑∞

k=−∞ 1/(k2 + x2) = π/x tanh(πx). Solving for A, and inserting into
Eq. (1.86), yields the important final result:

G(τ) =
~

2mω

cosh
[(

β~

2 − τ
)

ω
]

sinh
[

β~ω
2

] . (1.88)

1Proof: Clearly
P

∞

k=−∞
eikx = Cδ(x mod 2π), where C is some constant. In order to determine C, let us

integrate both sides of this equation from 0− to 2π + 0−. On the left-hand side we get 2πδk,0, on the right-hand
side C. Thus, C = 2π. Replacing now x by 2πTτ/~, and using δ(ax) = δ(x)/|a| on the right-hand side, yields
P

∞

k=−∞
eiωkτ = β~δ(τ mod β~).
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