
1. Quantum Mechanics

1.1. Basic structure

The properties of the system can be described by a Hamiltonian, which for non-relativistic spin-0
particles in one dimension takes the form

Ĥ =
p̂2

2m
+ V (x̂) , (1.1)

where m is the particle mass. The dynamics is governed by the Schrödinger equation,

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉 . (1.2)

Formally, the time evolution can be solved in terms of the time-evolution operator:

|ψ(t)〉 = Û(t; t0)|ψ(t0)〉 , (1.3)

where, for a time-independent Hamiltonian,

Û(t; t0) = e−
i
~

Ĥ(t−t0) . (1.4)

For the state vectors |ψ〉, various bases can be chosen. In the |x〉-basis,

〈x|x̂|x′〉 = x〈x|x′〉 = x δ(x − x′) , 〈x|p̂|x′〉 = −i~∂x〈x|x
′〉 = −i~∂x δ(x− x′) . (1.5)

In the energy basis,
Ĥ |n〉 = En|n〉 . (1.6)

In the classical limit, the system of Eq. (1.1) can be described by the Lagrangian

LM =
1

2
mẋ2 − V (x) . (1.7)

A Legendre transform leads to the classical Hamiltonian:

p =
∂LM

∂ẋ
, H = ẋp− LM =

p2

2m
+ V (x) . (1.8)

A most important example of a quantum mechanical system is provided by a harmonic oscillator:

V (x̂) ≡
1

2
mω2x̂2 . (1.9)

In this case the energy eigenstates can be found explicitly:

En = ~ω
(

n+
1

2

)

, n = 1, 2, 3, . . . . (1.10)

All states are non-degenerate.

It will turn out to be useful to view (quantum) mechanics formally as (0+1)-dimensional (quan-

tum) field theory: the operator x̂ can be viewed as the field operator φ̂ at a certain point,

x̂↔ φ̂(0) . (1.11)

In quantum field theory operators are usually represented in the Heisenberg picture rather than in
the Schrödinger picture; then

x̂H(t) ↔ φ̂H(t,0) . (1.12)

In the following we use an implicit notation whereby showing the time coordinate t as an argument
implies automatically the Heisenberg picture, and the corresponding subscript is left out.
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1.2. Canonical partition function

Taking now our quantum mechanical system to a finite temperature T , the basic quantity to
compute is the partition function Z. We employ the canonical ensemble, whereby Z is a function
of T . Introducing units where kB = 1 (i.e., There ≡ kBTSI-units), the partition function is defined
by

Z(T ) ≡ Tr [e−βĤ ] , β ≡
1

T
. (1.13)

From the partition function, other observables are obtained, for instance the free energy F , the
entropy S, and the average energy E:

F = −T lnZ , (1.14)

S = −
∂F

∂T
= lnZ +

1

TZ
Tr [Ĥe−βĤ ] = −

F

T
+
E

T
, (1.15)

E =
1

Z
Tr [Ĥe−βĤ ] . (1.16)

Let us now compute these quantities for the harmonic oscillator. This can be trivially done in
the energy basis:

Z =

∞
∑

n=0

〈n|e−βĤ |n〉 =

∞
∑

n=0

e−β~ω(1
2 +n) =

e−β~ω/2

1 − e−β~ω
=

1

2 sinh
(

~ω
2T

) . (1.17)

Consequently,

F = T ln

(

e
~ω
2T − e−

~ω
2T

)

=
~ω

2
+ T ln

(

1 − e−β~ω

)

(1.18)

T≪~ω
≈

~ω

2
(1.19)

T≫~ω
≈ −T ln

( T

~ω

)

, (1.20)

S = − ln

(

1 − e−β~ω

)

+
~ω

T

1

eβ~ω − 1
(1.21)

T≪~ω
≈

~ω

T
e−

~ω
T (1.22)

T≫~ω
≈ 1 + ln

T

~ω
, (1.23)

E = F + TS = ~ω

[

1

2
+

1

eβ~ω − 1

]

(1.24)

T≪~ω
≈

~ω

2
(1.25)

T≫~ω
≈ T . (1.26)

Here we have also shown the behaviours of the various functions at low temperatures T ≪ ~ω and
at high temperatures T ≫ ~ω. Note how in most cases one can identify the contribution of the
ground state, and of the thermal states, with their Bose-Einstein distribution function.

Note also that the average energy rises linearly with T at high temperatures, with a coefficient
counting the number of degrees of freedom (i.e. the “degeneracy”).

2



1.3. Path integral for the partition function

In the case of the harmonic oscillator, energy eigenvalues are known, and Z can easily be evaluated.
In many other cases, however, En are difficult to compute. A more useful representation of Z is
obtained by writing it as a path integral.

In order to get started, let us recall some basic relations. First of all,

〈x|p̂|p〉 = p〈x|p〉 = −i~∂x〈x|p〉 ⇒ 〈x|p〉 = Ae
ipx

~ , (1.27)

where A is some constant. Second, we will need completeness relations, which we write as
∫

dx |x〉〈x| = 1 , ∫

dp

B
|p〉〈p| = 1 , (1.28)

where B is another constant. The choices of A and B are not independent. Indeed,1 =

∫

dx

∫

dp

B

∫

dp′

B
|p〉〈p|x〉〈x|p′〉〈p′| =

∫

dx

∫

dp

B

∫

dp′

B
|p〉|A|2e

i(p′
−p)x
~ 〈p′| (1.29)

=

∫

dp

B

∫

dp′

B
|p〉|A|22π~δ(p′ − p)〈p′| =

2π~|A|2

B

∫

dp

B
|p〉〈p| =

2π~|A|2

B
1 . (1.30)

Thereby B = 2π~|A|2; we choose A ≡ 1, so that B = 2π~.

We then move to the evaluation of the partition function. We do this in the x-basis, whereby

Z = Tr [e−βĤ ] =

∫

dx 〈x|e−βĤ |x〉 =

∫

dx 〈x|e−
ǫĤ
~ · · · e−

ǫĤ
~ |x〉 . (1.31)

Here we have split e−βĤ into a product of N ≫ 1 different pieces, and defined ǫ ≡ β~/N .

The trick now is to insert 1 =

∫

dpi

2π~
|pi〉〈pi| , i = 1, . . . , N (1.32)

on the left side of each exponential, with i increasing from right to left; and1 =

∫

dxi |xi〉〈xi| , i = 1, . . . , N (1.33)

on the right side of each exponential, with again i increasing from right to left.

Thereby we are left to consider matrix elements of the type

〈xi+1|pi〉〈pi|e
− ǫ

~
Ĥ(p̂,x̂)|xi〉 = e

ipixi+1
~ 〈pi|e

− ǫ
~

H(pi,xi)+O(ǫ2)|xi〉

= exp

{

−
ǫ

~

[

p2
i

2m
− ipi

xi+1 − xi

ǫ
+ V (xi) + O(ǫ)

]}

. (1.34)

Moreover we need to note that on the very right, we have

〈x1|x〉 = δ(x1 − x) , (1.35)

which allows to carry out the integral over x; and that on the very left, the role of 〈xi+1| is played
by the state 〈x| = 〈x1|. Finally, we remark that the O(ǫ)-correction in Eq. (1.34) can be eliminated
by sending N → ∞.

In total, then, we can write the partition function as

Z = lim
N→∞

∫
[ N
∏

i=1

dxidpi

2π~

]

exp

{

−
1

~

N
∑

j=1

ǫ

[

p2
j

2m
− ipj

xj+1 − xj

ǫ
+ V (xj)

]}

∣

∣

∣

∣

∣

∣

xN+1≡x1,ǫ≡β~/N

.

(1.36)
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Oftentimes this is symbolically written as a “continuum” path integral, as

Z =

∫

x(β~)=x(0)

DxDp

2π~
exp

{

−
1

~

∫ β~

0

dτ

[

[p(τ)]2

2m
− ip(τ)ẋ(τ) + V (x(τ))

]}

. (1.37)

Note that in this form, the integration measure is well-defined (as a limit of that in Eq. (1.36)).

The integral over the momenta pi is gaussian, and can be carried out explicitly:
∫ ∞

−∞

dpi

2π~
exp

{

−
ǫ

~

[

p2
i

2m
− ipi

xi+1 − xi

ǫ

]}

=

√

m

2π~ǫ
exp

[

−
m(xi+1 − xi)

2

2~ǫ

]

. (1.38)

Thereby Eq. (1.36) becomes

Z = lim
N→∞

∫
[ N
∏

i=1

dxi
√

2π~ǫ/m

]

exp

{

−
1

~

N
∑

j=1

ǫ

[

m

2

(

xj+1 − xj

ǫ

)2

+ V (xj)

]}

∣

∣

∣

∣

∣

∣

xN+1≡x1,ǫ≡β~/N

.

(1.39)
We may also try to write this in a continuum form, like in Eq. (1.37). Of course, the measure
contains then a factor which appears quite divergent at large N ,

C ≡

(

m

2π~ǫ

)N/2

= exp

[

N

2
ln

(

mN

2π~2β

)]

. (1.40)

This factor is, however, completely independent of the properties of the potential V (xj). Thereby
it contains no dynamical information, and we actually do not need to worry too much about the
apparent divergence — in any case, we will return to C from another angle in the next section.
For the moment, then, we can again write a continuum form for the functional integral,

Z = C

∫

x(β~)=x(0)

Dx exp

{

−
1

~

∫ β~

0

dτ

[

m

2

(

dx(τ)

dτ

)2

+ V (x(τ))

]}

. (1.41)

Let us end by giving an “interpretation” to the result in Eq. (1.41). We recall that the usual
path integral at zero temperature has the exponential

exp

(

i

~

∫

dtLM

)

, LM =
m

2

(

dx

dt

)2

− V (x) . (1.42)

We note that Eq. (1.41) could be obtained with the following recipe:

(i) Carry out a Wick rotation, denoting τ ≡ it.

(ii) Introduce

LE ≡ −LM (τ = it) =
m

2

(

dx

dτ

)2

+ V (x) . (1.43)

(iii) Restrict τ to the interval 0...β~.

(iv) Require periodicity over τ .

With these steps, the exponential becomes

exp

(

−
1

~
SE

)

≡ exp

(

−
1

~

∫ β~

0

dτ LE

)

. (1.44)

where the subscript E stands for “Euclidean”, in contrast to “Minkowskian”. It will turn out that
this recipe works, almost without modifications, also in field theory, and even for spin-1/2 and
spin-1 particles, although the derivation of the path integral itself looks quite different in those
cases.
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