1. Quantum Mechanics

1.1. Basic structure

The properties of the system can be described by a Hamiltonian, which for non-relativistic spin-0
particles in one dimension takes the form

H= %H/(@), (1.1)

where m is the particle mass. The dynamics is governed by the Schrddinger equation,
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Formally, the time evolution can be solved in terms of the time-evolution operator:
(1) = Ultsto)|e(to)) , (1.3)

where, for a time-independent Hamiltonian,

Ul(t; tg) = e #H(t=t0) (1.4)

For the state vectors |1}, various bases can be chosen. In the |z)-basis,
(z|2|2") = x{z|2"y = xd(x —2'), (z|pla’) = —ihd,(x|2") = —ihd, 6(xz — 2) . (1.5)
In the energy basis,

Hin) = E,|n) . (1.6)

In the classical limit, the system of Eq. (1.1) can be described by the Lagrangian
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Ly = 3 mi? —V(z) . (1.7)
A Legendre transform leads to the classical Hamiltonian:
0Ly . p2
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A most important example of a quantum mechanical system is provided by a harmonic oscillator:

%mw%? . (1.9)
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In this case the energy eigenstates can be found explicitly:

1
En:m(n+§), n=1,2.3,.... (1.10)

All states are non-degenerate.

It will turn out to be useful to view (quantum) mechanics formally as (0+1)-dimensional (quan-
tum,) field theory: the operator 2 can be viewed as the field operator ¢ at a certain point,

& < ¢(0). (1.11)

In quantum field theory operators are usually represented in the Heisenberg picture rather than in
the Schrodinger picture; then R

Tu(t) < ou(t,0). (1.12)
In the following we use an implicit notation whereby showing the time coordinate ¢t as an argument
implies automatically the Heisenberg picture, and the corresponding subscript is left out.



1.2. Canonical partition function

Taking now our quantum mechanical system to a finite temperature 7', the basic quantity to
compute is the partition function Z. We employ the canonical ensemble, whereby Z is a function
of T. Introducing units where kg = 1 (i.e., There = kBT S1-units), the partition function is defined
by

Z(T)=Trle 1], B= % . (1.13)

From the partition function, other observables are obtained, for instance the free energy F', the
entropy S, and the average energy E:

F = -ThZ, (1.14)
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Let us now compute these quantities for the harmonic oscillator. This can be trivially done in
the energy basis:
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Here we have also shown the behaviours of the various functions at low temperatures T' < hw and
at high temperatures T' > hw. Note how in most cases one can identify the contribution of the
ground state, and of the thermal states, with their Bose-Einstein distribution function.

Note also that the average energy rises linearly with 7" at high temperatures, with a coefficient
counting the number of degrees of freedom (i.e. the “degeneracy”).



1.3. Path integral for the partition function

In the case of the harmonic oscillator, energy eigenvalues are known, and Z can easily be evaluated.
In many other cases, however, F,, are difficult to compute. A more useful representation of Z is
obtained by writing it as a path integral.

In order to get started, let us recall some basic relations. First of all,
- . vz
(zplp) = p(z|p) = —ihdy(z|p) = (z|p) = Ae™™ | (1.27)
where A is some constant. Second, we will need completeness relations, which we write as

/dx|x><x| ~1, /%p p)pl = 1, (1.28)

where B is another constant. The choices of A and B are not independent. Indeed,

/ /dp/ [p)(pl) (xlp') pl—/ /dp/ DIAR ST () (1.29)
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Thereby B = 27h|A|?; we choose A = 1, so that B = 2rh.
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We then move to the evaluation of the partition function. We do this in the z-basis, whereby
Z = Trle P = /dx (zle=PH |z) = /da: (le=F e F|z) . (1.31)

Here we have split ePH into a product of N > 1 different pieces, and defined ¢ = 8h/N.

The trick now is to insert

11:/dp1 p)(pil, i=1,...,N (1.32)
on the left side of each exponential, with ¢ increasing from right to left; and

lz/dxi|xi><xi|, i=1,...,N (1.33)
on the right side of each exponential, with again ¢ increasing from right to left.

Thereby we are left to consider matrix elements of the type

iPiTi41

(wosa|pid(pile FAPD|z) = 7T (pyle 7 HPEITO )
= exp{—ﬁ [21)7;1 - zng +V(x) + O(e)} } . (1.34)

Moreover we need to note that on the very right, we have
(x1|x) = 0(21 — ) | (1.35)

which allows to carry out the integral over x; and that on the very left, the role of (x; 1] is played
by the state (x| = (x1|. Finally, we remark that the O(e)-correction in Eq. (1.34) can be eliminated
by sending N — oo.

In total, then, we can write the partition function as
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TN+1=x1,6=6h/N
(1.36)



Oftentimes this is symbolically written as a “continuum” path integral, as

z- /x (ﬁh)_z(oggpexp{_% /0 M [% —ip(r)a(r) + V(I(T))} } s

Note that in this form, the integration measure is well-defined (as a limit of that in Eq. (1.36)).

The integral over the momenta p; is gaussian, and can be carried out explicitly:
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Thereby Eq. (1.36) becomes
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We may also try to write this in a continuum form, like in Eq. (1.37). Of course, the measure
contains then a factor which appears quite divergent at large N,

([ m N/z N mN

This factor is, however, completely independent of the properties of the potential V(x;). Thereby
it contains no dynamical information, and we actually do not need to worry too much about the
apparent divergence — in any case, we will return to C from another angle in the next section.
For the moment, then, we can again write a continuum form for the functional integral,

z-¢C /x(ﬁh)_z(o)m exp{—% /Oﬁth {% (dz(:))Q 4 V(x(T))] } . (1.41)

Let us end by giving an “interpretation” to the result in Eq. (1.41). We recall that the usual
path integral at zero temperature has the exponential

exp(%/dt£M>  Lu= %(%)2 V(). (1.42)

We note that Eq. (1.41) could be obtained with the following recipe:

(i) Carry out a Wick rotation, denoting 7 = it.

(ii) Introduce
m [ dx
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(iii) Restrict 7 to the interval 0...5h.

(iv) Require periodicity over 7.

With these steps, the exponential becomes

1 I
exp(—ﬁS’E) Eexp<—ﬁ/ dT£E> . (1.44)
0

where the subscript E stands for “Euclidean”, in contrast to “Minkowskian”. It will turn out that
this recipe works, almost without modifications, also in field theory, and even for spin-1/2 and
spin-1 particles, although the derivation of the path integral itself looks quite different in those
cases.



