1. Quantum Mechanics

1.1. Basic structure

The properties of the system can be described by a Hamiltonian, which for non-relativistic spin-0 particles in one dimension takes the form

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+V(\hat{x}) \tag{1.1}
\end{equation*}
$$

where m is the particle mass. The dynamics is governed by the Schrödinger equation,

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\hat{H}|\psi\rangle . \tag{1.2}
\end{equation*}
$$

Formally, the time evolution can be solved in terms of the time-evolution operator:

$$
\begin{equation*}
|\psi(t)\rangle=\hat{U}\left(t ; t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle \tag{1.3}
\end{equation*}
$$

where, for a time-independent Hamiltonian,

$$
\begin{equation*}
\hat{U}\left(t ; t_{0}\right)=e^{-\frac{i}{\hbar} \hat{H}\left(t-t_{0}\right)} . \tag{1.4}
\end{equation*}
$$

For the state vectors $|\psi\rangle$, various bases can be chosen. In the $|x\rangle$-basis,

$$
\begin{equation*}
\langle x| \hat{x}\left|x^{\prime}\right\rangle=x\left\langle x \mid x^{\prime}\right\rangle=x \delta\left(x-x^{\prime}\right), \quad\langle x| \hat{p}\left|x^{\prime}\right\rangle=-i \hbar \partial_{x}\left\langle x \mid x^{\prime}\right\rangle=-i \hbar \partial_{x} \delta\left(x-x^{\prime}\right) \tag{1.5}
\end{equation*}
$$

In the energy basis,

$$
\begin{equation*}
\hat{H}|n\rangle=E_{n}|n\rangle \tag{1.6}
\end{equation*}
$$

In the classical limit, the system of Eq. (1.1) can be described by the Lagrangian

$$
\begin{equation*}
\mathcal{L}_{M}=\frac{1}{2} m \dot{x}^{2}-V(x) . \tag{1.7}
\end{equation*}
$$

A Legendre transform leads to the classical Hamiltonian:

$$
\begin{equation*}
p=\frac{\partial \mathcal{L}_{M}}{\partial \dot{x}}, \quad H=\dot{x} p-\mathcal{L}_{M}=\frac{p^{2}}{2 m}+V(x) . \tag{1.8}
\end{equation*}
$$

A most important example of a quantum mechanical system is provided by a harmonic oscillator:

$$
\begin{equation*}
V(\hat{x}) \equiv \frac{1}{2} m \omega^{2} \hat{x}^{2} \tag{1.9}
\end{equation*}
$$

In this case the energy eigenstates can be found explicitly:

$$
\begin{equation*}
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right), \quad n=1,2,3, \ldots \tag{1.10}
\end{equation*}
$$

All states are non-degenerate.
It will turn out to be useful to view (quantum) mechanics formally as ($0+1$)-dimensional (quantum) field theory: the operator \hat{x} can be viewed as the field operator $\hat{\phi}$ at a certain point,

$$
\begin{equation*}
\hat{x} \leftrightarrow \hat{\phi}(\mathbf{0}) . \tag{1.11}
\end{equation*}
$$

In quantum field theory operators are usually represented in the Heisenberg picture rather than in the Schrödinger picture; then

$$
\begin{equation*}
\hat{x}_{H}(t) \leftrightarrow \hat{\phi}_{H}(t, \mathbf{0}) . \tag{1.12}
\end{equation*}
$$

In the following we use an implicit notation whereby showing the time coordinate t as an argument implies automatically the Heisenberg picture, and the corresponding subscript is left out.

1.2. Canonical partition function

Taking now our quantum mechanical system to a finite temperature T, the basic quantity to compute is the partition function \mathcal{Z}. We employ the canonical ensemble, whereby \mathcal{Z} is a function of T. Introducing units where $k_{B}=1$ (i.e., $T_{\text {here }} \equiv k_{B} T_{\text {SI-units }}$), the partition function is defined by

$$
\begin{equation*}
\mathcal{Z}(T) \equiv \operatorname{Tr}\left[e^{-\beta \hat{H}}\right], \quad \beta \equiv \frac{1}{T} \tag{1.13}
\end{equation*}
$$

From the partition function, other observables are obtained, for instance the free energy F, the entropy S, and the average energy E :

$$
\begin{align*}
F & =-T \ln \mathcal{Z} \tag{1.14}\\
S & =-\frac{\partial F}{\partial T}=\ln \mathcal{Z}+\frac{1}{T \mathcal{Z}} \operatorname{Tr}\left[\hat{H} e^{-\beta \hat{H}}\right]=-\frac{F}{T}+\frac{E}{T} \tag{1.15}\\
E & =\frac{1}{\mathcal{Z}} \operatorname{Tr}\left[\hat{H} e^{-\beta \hat{H}}\right] \tag{1.16}
\end{align*}
$$

Let us now compute these quantities for the harmonic oscillator. This can be trivially done in the energy basis:

$$
\begin{equation*}
\mathcal{Z}=\sum_{n=0}^{\infty}\langle n| e^{-\beta \hat{H}}|n\rangle=\sum_{n=0}^{\infty} e^{-\beta \hbar \omega\left(\frac{1}{2}+n\right)}=\frac{e^{-\beta \hbar \omega / 2}}{1-e^{-\beta \hbar \omega}}=\frac{1}{2 \sinh \left(\frac{\hbar \omega}{2 T}\right)} \tag{1.17}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
& F=T \ln \left(e^{\frac{\hbar \omega}{2 T}}-e^{-\frac{\hbar \omega}{2 T}}\right)=\frac{\hbar \omega}{2}+T \ln \left(1-e^{-\beta \hbar \omega}\right) \tag{1.18}\\
& T \ll \hbar \omega \quad \frac{\hbar \omega}{2} \tag{1.19}\\
& \stackrel{T>}{\approx}{ }^{\hbar \omega}-T \ln \left(\frac{T}{\hbar \omega}\right), \tag{1.20}\\
& S=-\ln \left(1-e^{-\beta \hbar \omega}\right)+\frac{\hbar \omega}{T} \frac{1}{e^{\beta \hbar \omega}-1} \tag{1.21}\\
& \stackrel{T \ll \hbar \omega}{\approx} \frac{\hbar \omega}{T} e^{-\frac{\hbar \omega}{T}} \tag{1.22}\\
& \stackrel{T \gg \hbar \omega}{ } 1+\ln \frac{T}{\hbar \omega}, \tag{1.23}\\
& E=F+T S=\hbar \omega\left[\frac{1}{2}+\frac{1}{e^{\beta \hbar \omega}-1}\right] \tag{1.24}\\
& T \stackrel{\approx}{\approx} \omega \frac{\hbar \omega}{2} \tag{1.25}\\
& T \gg \hbar \omega T \text {. } \tag{1.26}
\end{align*}
$$

Here we have also shown the behaviours of the various functions at low temperatures $T \ll \hbar \omega$ and at high temperatures $T \gg \hbar \omega$. Note how in most cases one can identify the contribution of the ground state, and of the thermal states, with their Bose-Einstein distribution function.

Note also that the average energy rises linearly with T at high temperatures, with a coefficient counting the number of degrees of freedom (i.e. the "degeneracy").

1.3. Path integral for the partition function

In the case of the harmonic oscillator, energy eigenvalues are known, and \mathcal{Z} can easily be evaluated. In many other cases, however, E_{n} are difficult to compute. A more useful representation of \mathcal{Z} is obtained by writing it as a path integral.

In order to get started, let us recall some basic relations. First of all,

$$
\begin{equation*}
\langle x| \hat{p}|p\rangle=p\langle x \mid p\rangle=-i \hbar \partial_{x}\langle x \mid p\rangle \Rightarrow\langle x \mid p\rangle=A e^{\frac{i p x}{\hbar}} \tag{1.27}
\end{equation*}
$$

where A is some constant. Second, we will need completeness relations, which we write as

$$
\begin{equation*}
\int \mathrm{d} x|x\rangle\langle x|=\mathbb{1}, \quad \int \frac{\mathrm{d} p}{B}|p\rangle\langle p|=\mathbb{1} \tag{1.28}
\end{equation*}
$$

where B is another constant. The choices of A and B are not independent. Indeed,

$$
\begin{align*}
\mathbb{1} & =\int \mathrm{d} x \int \frac{\mathrm{~d} p}{B} \int \frac{\mathrm{~d} p^{\prime}}{B}|p\rangle\langle p \mid x\rangle\left\langle x \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right|=\int \mathrm{d} x \int \frac{\mathrm{~d} p}{B} \int \frac{\mathrm{~d} p^{\prime}}{B}|p\rangle|A|^{2} e^{\frac{i\left(p^{\prime}-p\right) x}{h}}\left\langle p^{\prime}\right| \tag{1.29}\\
& =\int \frac{\mathrm{d} p}{B} \int \frac{\mathrm{~d} p^{\prime}}{B}|p\rangle|A|^{2} 2 \pi \hbar \delta\left(p^{\prime}-p\right)\left\langle p^{\prime}\right|=\frac{2 \pi \hbar|A|^{2}}{B} \int \frac{\mathrm{~d} p}{B}|p\rangle\langle p|=\frac{2 \pi \hbar|A|^{2}}{B} \mathbb{1} \tag{1.30}
\end{align*}
$$

Thereby $B=2 \pi \hbar|A|^{2}$; we choose $A \equiv 1$, so that $B=2 \pi \hbar$.
We then move to the evaluation of the partition function. We do this in the x-basis, whereby

$$
\begin{equation*}
\mathcal{Z}=\operatorname{Tr}\left[e^{-\beta \hat{H}}\right]=\int \mathrm{d} x\langle x| e^{-\beta \hat{H}}|x\rangle=\int \mathrm{d} x\langle x| e^{-\frac{\varepsilon \hat{H}}{\hbar}} \cdots e^{-\frac{\epsilon \hat{H}}{\hbar}}|x\rangle \tag{1.31}
\end{equation*}
$$

Here we have split $e^{-\beta \hat{H}}$ into a product of $N \gg 1$ different pieces, and defined $\epsilon \equiv \beta \hbar / N$.
The trick now is to insert

$$
\begin{equation*}
\mathbb{1}=\int \frac{\mathrm{d} p_{i}}{2 \pi \hbar}\left|p_{i}\right\rangle\left\langle p_{i}\right|, \quad i=1, \ldots, N \tag{1.32}
\end{equation*}
$$

on the left side of each exponential, with i increasing from right to left; and

$$
\begin{equation*}
\mathbb{1}=\int \mathrm{d} x_{i}\left|x_{i}\right\rangle\left\langle x_{i}\right|, \quad i=1, \ldots, N \tag{1.33}
\end{equation*}
$$

on the right side of each exponential, with again i increasing from right to left.
Thereby we are left to consider matrix elements of the type

$$
\begin{align*}
\left\langle x_{i+1} \mid p_{i}\right\rangle\left\langle p_{i}\right| e^{-\frac{\epsilon}{\hbar} \hat{H}(\hat{p}, \hat{x})}\left|x_{i}\right\rangle & =e^{\frac{i p_{i} x_{i+1}}{\hbar}}\left\langle p_{i}\right| e^{-\frac{\epsilon}{\hbar} H\left(p_{i}, x_{i}\right)+\mathcal{O}\left(\epsilon^{2}\right)}\left|x_{i}\right\rangle \\
& =\exp \left\{-\frac{\epsilon}{\hbar}\left[\frac{p_{i}^{2}}{2 m}-i p_{i} \frac{x_{i+1}-x_{i}}{\epsilon}+V\left(x_{i}\right)+\mathcal{O}(\epsilon)\right]\right\} . \tag{1.34}
\end{align*}
$$

Moreover we need to note that on the very right, we have

$$
\begin{equation*}
\left\langle x_{1} \mid x\right\rangle=\delta\left(x_{1}-x\right), \tag{1.35}
\end{equation*}
$$

which allows to carry out the integral over x; and that on the very left, the role of $\left\langle x_{i+1}\right|$ is played by the state $\langle x|=\left\langle x_{1}\right|$. Finally, we remark that the $\mathcal{O}(\epsilon)$-correction in Eq. (1.34) can be eliminated by sending $N \rightarrow \infty$.

In total, then, we can write the partition function as

$$
\begin{equation*}
\mathcal{Z}=\left.\lim _{N \rightarrow \infty} \int\left[\prod_{i=1}^{N} \frac{\mathrm{~d} x_{i} \mathrm{~d} p_{i}}{2 \pi \hbar}\right] \exp \left\{-\frac{1}{\hbar} \sum_{j=1}^{N} \epsilon\left[\frac{p_{j}^{2}}{2 m}-i p_{j} \frac{x_{j+1}-x_{j}}{\epsilon}+V\left(x_{j}\right)\right]\right\}\right|_{x_{N+1} \equiv x_{1}, \epsilon \equiv \beta \hbar / N} \tag{1.36}
\end{equation*}
$$

Oftentimes this is symbolically written as a "continuum" path integral, as

$$
\begin{equation*}
\mathcal{Z}=\int_{x(\beta \hbar)=x(0)} \frac{\mathcal{D} x \mathcal{D} p}{2 \pi \hbar} \exp \left\{-\frac{1}{\hbar} \int_{0}^{\beta \hbar} \mathrm{d} \tau\left[\frac{[p(\tau)]^{2}}{2 m}-i p(\tau) \dot{x}(\tau)+V(x(\tau))\right]\right\} . \tag{1.37}
\end{equation*}
$$

Note that in this form, the integration measure is well-defined (as a limit of that in Eq. (1.36)).
The integral over the momenta p_{i} is gaussian, and can be carried out explicitly:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\mathrm{d} p_{i}}{2 \pi \hbar} \exp \left\{-\frac{\epsilon}{\hbar}\left[\frac{p_{i}^{2}}{2 m}-i p_{i} \frac{x_{i+1}-x_{i}}{\epsilon}\right]\right\}=\sqrt{\frac{m}{2 \pi \hbar \epsilon}} \exp \left[-\frac{m\left(x_{i+1}-x_{i}\right)^{2}}{2 \hbar \epsilon}\right] \tag{1.38}
\end{equation*}
$$

Thereby Eq. (1.36) becomes

$$
\begin{equation*}
\mathcal{Z}=\left.\lim _{N \rightarrow \infty} \int\left[\prod_{i=1}^{N} \frac{\mathrm{~d} x_{i}}{\sqrt{2 \pi \hbar \epsilon / m}}\right] \exp \left\{-\frac{1}{\hbar} \sum_{j=1}^{N} \epsilon\left[\frac{m}{2}\left(\frac{x_{j+1}-x_{j}}{\epsilon}\right)^{2}+V\left(x_{j}\right)\right]\right\}\right|_{x_{N+1} \equiv x_{1}, \epsilon \equiv \beta \hbar / N} \tag{1.39}
\end{equation*}
$$

We may also try to write this in a continuum form, like in Eq. (1.37). Of course, the measure contains then a factor which appears quite divergent at large N,

$$
\begin{equation*}
C \equiv\left(\frac{m}{2 \pi \hbar \epsilon}\right)^{N / 2}=\exp \left[\frac{N}{2} \ln \left(\frac{m N}{2 \pi \hbar^{2} \beta}\right)\right] \tag{1.40}
\end{equation*}
$$

This factor is, however, completely independent of the properties of the potential $V\left(x_{j}\right)$. Thereby it contains no dynamical information, and we actually do not need to worry too much about the apparent divergence - in any case, we will return to C from another angle in the next section. For the moment, then, we can again write a continuum form for the functional integral,

$$
\begin{equation*}
\mathcal{Z}=C \int_{x(\beta \hbar)=x(0)} \mathcal{D} x \exp \left\{-\frac{1}{\hbar} \int_{0}^{\beta \hbar} \mathrm{d} \tau\left[\frac{m}{2}\left(\frac{\mathrm{~d} x(\tau)}{\mathrm{d} \tau}\right)^{2}+V(x(\tau))\right]\right\} \tag{1.41}
\end{equation*}
$$

Let us end by giving an "interpretation" to the result in Eq. (1.41). We recall that the usual path integral at zero temperature has the exponential

$$
\begin{equation*}
\exp \left(\frac{i}{\hbar} \int \mathrm{~d} t \mathcal{L}_{M}\right), \quad \mathcal{L}_{M}=\frac{m}{2}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}-V(x) \tag{1.42}
\end{equation*}
$$

We note that Eq. (1.41) could be obtained with the following recipe:
(i) Carry out a Wick rotation, denoting $\tau \equiv i t$.
(ii) Introduce

$$
\begin{equation*}
\mathcal{L}_{E} \equiv-\mathcal{L}_{M}(\tau=i t)=\frac{m}{2}\left(\frac{\mathrm{~d} x}{\mathrm{~d} \tau}\right)^{2}+V(x) \tag{1.43}
\end{equation*}
$$

(iii) Restrict τ to the interval $0 \ldots \beta \hbar$.
(iv) Require periodicity over τ.

With these steps, the exponential becomes

$$
\begin{equation*}
\exp \left(-\frac{1}{\hbar} S_{E}\right) \equiv \exp \left(-\frac{1}{\hbar} \int_{0}^{\beta \hbar} \mathrm{d} \tau \mathcal{L}_{E}\right) \tag{1.44}
\end{equation*}
$$

where the subscript E stands for "Euclidean", in contrast to "Minkowskian". It will turn out that this recipe works, almost without modifications, also in field theory, and even for spin- $1 / 2$ and spin-1 particles, although the derivation of the path integral itself looks quite different in those cases.

