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Abstract:

It has been a longstanding dream that experimental tests of

thermal QCD through heavy ion collision experiments could yield

theoretical insights that would be useful for some cosmological

problems as well. These lectures cover selected topics within

thermal QCD with this perspective in mind. The observables

touched upon are the equation of state, viscosities, as well as

the rates of elastic and inelastic reactions experienced by heavy

quarks. Depending on the observable the focus will be either on

elaborating on the basic concepts, on outlining the link between

heavy ion collisions and cosmology, or on reviewing modern

developments.
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I. Overall equation of state
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QCD

Continuum theory in Euclidean signature:

LQCD =
1

4g2

N2
c−1
X

a=1

F
a
µνF

a
µν +

Nf
X

i=1

ψ̄i[γµDµ +mi]ψi .

Nc =Nf = 3; in the MS renormalization scheme with a scale

∼ 2 GeV, mu,md∼5 MeV, ms∼100 MeV; g(MZ) ∼ 1.2.

We regulate here mostly by going into D = 4 − 2ǫ dimensions.
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Thermodynamics

Minus grand canonical free energy density, i.e. pressure:

p(T, µ) ≡ lim
V→∞

T

V
ln

(

Tr

"

exp

 

−ĤQCD − µB̂

T

!#)

,

where ĤQCD is the Hamilton operator corresponding to LQCD,

and B̂ is the baryon number operator.

We will denote p(T ) ≡ p(T, 0), which is the “hot” case.

One can also consider the “dense” case µ 6= 0, relevant for

astrophysics; however in cosmological applications |µ| ≪ T .
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In cosmology, according to the Einstein equations, the cooling

rate of the Universe is

1

T

dT

dt
= −

√
24π

mPl

p

e(T )s(T )

c(T )
,

where mPl = 1.2 × 1019 GeV and

s(T ) ≡ p
′
(T ) [entropy density],

e(T ) ≡ Ts(T ) − p(T ) [energy density],

c(T ) ≡ e
′
(T ) = Tp

′′
(T ) [heat capacity].

Cosmological relics (dark matter, background radiation, etc) are

born when some “microscopic” reaction time τ(T ) becomes

longer than the “macroscopic” time period tnow − t(T ).
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For instance, for “Cold Dark Matter” of mass M , experiencing

only weak interactions, this happens at T ∼ M/25. For M =

10...1000 GeV, T = 0.4...40 GeV, and QCD is important.

Srednicki Watkins Olive NPB 310 (1988) 693;
Hindmarsh Philipsen hep-ph/0501232

For “Warm Dark Matter” made of right-handed “sterile”

neutrinos with M ∼ keV, production peaks at T ∼ 150 MeV.

Then QCD effects are even more important.

Dodelson Widrow hep-ph/9303287;
Shi Fuller Abazajian astro-ph/9810076, astro-ph/0204293

Asaka ML Shaposhnikov hep-ph/0612182; ML Shaposhnikov 0804.4543

We will return to specific examples later on!
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In heavy ion collision experiments, the expansion of the system,

after thermalization, is determined by the energy-momentum

tensor

T
µν

= [p(T ) + e(T )]u
µ
u
ν − p(T )g

µν
+ O(∂

µ
u
ν
) ,

where uµ is the flow velocity, and ∂µT
µν = 0.

After hydrodynamic expansion the system gets hadronized at

T ∼ 100...150 MeV. The hadron spectrum observed depends

indirectly on p(T ).
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Actually, at first sight, it is not easy to extract p(T ). Total

multiplicity in heavy ion collisions:
dN

/d
y

−110

1

10

210

Data

STAR

PHENIX

BRAHMS

=29.7/11df/N2χModel, 
3= 30 MeV, V=1950 fm

b
µT=164 MeV, 

=200 GeVNNs

+π −π +K
−

K p p Λ Λ −Ξ
+

Ξ Ω φ d d K* *Σ *Λ

Andronic et al 0901.2909

All information about evolution before hadronization appears to

be lost: thermal equilibrium has no memory!
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More sensitive are differential observables like “elliptic flow”, v2,

characterizing the anisotropy of momentum distribution in various

directions of a non-central collision:
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In this example none of the models describes the data, so assumed

p(T ) or other inputs would need to be modified!
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Solid understanding of p(T ) is possible in 2 limits only.

0 MeV<∼T <∼ 100 MeV: chiral symmetry breaking +

confinement ⇒ weakly interacting massive hadrons:

p(T ) ≈
X

i

T
4

„

mi

2πT

«
3
2

e
−mi
T .

T ≫ 500 MeV: asymptotic freedom ⇒ weakly interacting

quarks and gluons:

p(T ) ≈ π2T 4

90

»

2(N
2
c − 1) +

7

2
NcNf

–

≈ 5.2T
4
.

What happens at intermediate temperatures?
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Traditionally it was thought that there is a strong first order phase

transition in between the low-T and the high-T regimes.
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But the distinction between the two limits could also be smooth,

like in between liquid and vapour, because QCD has no “order

parameter” for physical quark masses.

vapour

liquid

phase diagram of water

p

T

(“Spontaneous chiral symmetry breaking” and “confinement” can

be precisely defined only in specific limits.)
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To find out what really happens, lattice experiments have been

carried out since more than 25 years.
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de Forcrand Philipsen hep-lat/0607017; Aoki et al hep-lat/0611014

However systematic errors (volume, lattice spacing, non-physical

breaking of chiral symmetry) are hard to quantify.
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Pressure as a function of T in the crossover region:
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hotQCD 0903.4379; Aoki et al 0903.4155; Kanaya et al 0910.5284; Bornyakov et al 0910.2392

Systematic errors possible here as well, but are gradually being

reduced through the work of many groups.
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Unfortunately numerical results can yield no analytic control over

parameteric dependences (Nc, Nf,mu,md,ms), which would

be interesting from the theoretical point of view.

Nc-dependence at Nf = 0: Datta Gupta 0910.2889; Panero 0907.3719

They are also hard to extrapolate to very high temperatures

(1 GeV <∼T <∼ 100 GeV), interesting from the cosmological

point of view, if “Cold Dark Matter” is realized in nature.

So, it is worthwhile to explore complementary avenues as well!
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pQCD at high temperatures

Lattice (p.16) deviates from non-interacting quarks and gluons

(≡ ǫSB(T ); SB for “Stefan-Boltzmann”) even at T ∼ 550 MeV.

Could the deviation be understood as a “small correction”?

To find out, compute corrections to pSB(T ) in a power series in

the QCD coupling constant g!

g2: Shuryak 1978; Chin 1978

g3: Kapusta 1979

g4 ln(1/g): Toimela 1983

g4: Arnold, Zhai 1994

g5: Zhai, Kastening 1995; Braaten, Nieto 1995

g6 ln(1/g): Schröder 2002; Kajantie et al 2002

g6 (partly): Di Renzo et al 2006; Gynther et al 2009
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How does it go?

Start from a path integral representation of p(T ):

p(T ) = lim
V→∞

T

V
ln

Z

b.c.

D[A
a
µ, ψ̄, ψ]e

−
R 1/T
0 dτ

R

d3−2ǫxLQCD .

1-loop:

p(T ) =
π2T 4

45
(N

2
c − 1 +

7

4
NcNf) .

2-loop:

δp(T ) = −g
2T 4

144
(N

2
c − 1)(Nc +

5

4
Nf) .
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Example of a sum-integral contributing to δp(T ):

T
X

ωn

Z

ddk

(2π)d
1

ω2
n + k2

= 2T

∞
X

n=1

1

(4π)d/2
Γ(1 − d

2)

Γ(1)

1

(2πnT )2−d

= 2T
1

(4π)d/2(2πT )2−dΓ(1 − d

2
)ζ(2 − d)

d=3−2ǫ
= µ

−2ǫT
2

12



1

˛

˛

˛

˛

˛

˛

˛

˛

ζ(−1) = − 1

12
!

+ǫ

»

2 ln

„

µ̄eγE

4πT

«

+ 2 − 2γE + 2
ζ′(−1)

ζ(−1)

–

+O(ǫ
2
)
¯

, µ̄
2 ≡ 4πµ

2
e
−γE .
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3-loop: Uncancelled infrared (IR) divergences!

g
4
T

5
Z

d3k

k4
+ ... power divergent .

g
4
T

4
Z

d3k d3q

k2q2(k + q)2
+ ... log divergent .

Strict perturbation theory (loop expansion) breaks down!

Loop expansion 6= weak-coupling expansion
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Physics: interactions make it a multiscale system, generating

“collective phenomena” like colour-electric screening at |k| ∼
mE ∼ gT , and colour-magnetic screening at |k| ∼ g2T/π.

We did not account for this, thus met a dead end.

Method for making progress: effective field theories.
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QCD; |k| ∼ πT, gT, g2T/π

⇓ perturbation theory (1)

EQCD; |k| ∼ gT, g2T/π

⇓ perturbation theory (2)

MQCD; |k| ∼ g2T/π

⇓ numerical simulations (3)

p(T ) .

„

LEQCD =
1

4g2
E

F
a
ijF

a
ij +

1

2
(Dabi A

b
0)(Daci A

c
0) + m

2
E Tr[A

2
0] + . . . .

«
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Contributions: (ΛE,ΛM are “matching scales”, i.e. µ̄’s associated

with the various steps; for step (1) p.20 with µ̄ → ΛE)

δp(1)

T 4
∼ 1 + g

2
+ g

4
ln

4πT

ΛE

+ g
6
ln

4πT

ΛE

+ ... ,

δp(2)

T 4
∼ g

3
+ g

4
ln

ΛE

gT
+ g

5
+ g

6
ln

ΛE

gT
+ g

6
ln
gT

ΛM

+ ... ,

δp(3)

T 4
∼ g

6

„

ln
ΛM

g2T/π
+ [non-pert]

«

.

If the effective theories are the correct ones, then the unphysical

matching scales cancel at the end, which serves as a nice

consistency check for the computation.
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Numerical evaluation (Nf = 0, Tc ≃ 0.3 GeV):
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Kajantie et al hep-ph/0211321

⇒ Interactions are strong even at high T — system is not free.

[Reason for big effects (?): first contribution from a new scale.]

25



Nevertheless there is hope that interactions are accountable:

several past tests have worked out nicely!
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26



Subsequently Nf → 6 and include weakly interacting particles.

E.g. interpolating resonance gas at T < Tc to pQCD at T > Tc:

g eff ≡ e(T )

[π
2T4

30 ]
, h eff ≡ s(T )

[2π
2T3

45 ]
, c

2
s ≡

dp

de
.
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27



With such curves we could return to cosmology and consider the

evolution equation for the Cold Dark Matter relic abundance.

For Y (T ) ≡ nCDM(T )/s(T ): Gondolo Gelmini NPB 360 (1991) 145

dY

dT
≃

s

πg∗(T )

45
mPl 〈σvMøl〉(Y 2 − Y

2
eq) ,

where

g∗(T ) ≃ h2
eff(T )

geff(T )

»

1

3c2s(T )

–2

.

2

−
2
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Inserting previous functions we can plot g∗:
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Effects of uncertainties on Y on the 1% level.
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For Warm Dark Matter, production can happen close to the QCD

crossover, leading to more dramatic effects (Ω ∝ MWDMY ):

Asaka ML Shaposhnikov hep-ph/0612182
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Conclusions

From the theoretical as well as phenomenological point of view,

one of the important observables of QCD is minus the free energy

density, or pressure, p(T ).

Its computation is plagued by IR sensitivity, even at very high

temperatures T ≫ GeV (or very small couplings g ≪ 1).

Effective theory methods allow to resum appropriate classes of

higher loop diagrams, either perturbatively (effects from the scale

mE ∼ gT ) or non-perturbatively (effects from the scale g2T/π),

so that a weak-coupling expansion can be defined.

The results have significance for certain Dark Matter scenarios.
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II. Shear and bulk viscosities
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Recall again that in principle the hydrodynamic characteristics of

the QCD plasma can be extracted from a comparison between

heavy ion collision experiments and simulation:
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Here certain p(T ), e(T ), s(T ) were assumed as fixed inputs,

and η(T ), the so-called “shear viscosity”, was varied.
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The reason that a viscosity plays a role is that it yields a gradient

correction to the energy-momentum tensor:

T
µν

= [p(T ) + e(T )]u
µ
u
ν − p(T )g

µν
+ O((η, ζ)∂

µ
u
ν
) .

Shear viscosity η: traceless part. Bulk viscosity ζ: trace part.

Explicitly, in the non-relativistic limit |uµ| ≪ 1:

Tij = (p− ζ∇ · v)δij − η(∂iv
j
+ ∂jv

i − 2

3
δij∇ · v) .

Since the system generated in heavy ion collisions is small,

gradients can be large: η∂u ∼ p.
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In contrast, the Universe is very homogeneous, and gradient

corrections can have no direct effect on the overall expansion.1

For instance, in the QCD epoch (T ∼ 200 MeV), the microscopic

length scale is ξ ∼ 1
T while the system size = horizon radius is

ℓH ∼ tUniverse ∼
mPl

T 2
∼ 1020

T
.

It turns out, however, that the bulk viscosity ζ makes a formal

appearance in a completely different context!
Bödeker hep-ph/0605030

1Evolution of density perturbations may be a different story.
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Consider some very weakly coupled scalar field, ϕ:

Lϕ ∼ 1

2
ϕ(−� −m

2
)ϕ+

ϕ

M
× 1

g2
F
aµν
F
a
µν ,

where m ∼ mSUSY, M ∼ mPl.

This leads to a “moduli problem”: after inflation 〈ϕ(0)〉 ≫ m,

and ϕ decays slowly, Γ ∼ m3/M2, whereby its energy density

eventually comes to dominate over that of radiation.

This is in contrast with standard cosmology, where a radiation-

dominated expansion is needed at least starting from the

nucleosynthesis epoch.
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Standard cosmology
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Q: could the vacuum rate Γ ∼ m3/M2 be made faster by

thermal corrections associated with the “normal” degrees of

freedom, represented by F a
µν?

If so, the “dangerous relic” ϕ could decay (i.e. lose its energy to

radiation) before nucleosynthesis, and become harmless.

(There are many other similar dangerous relics in cosmology; in

particular theories predicting the generation of topological defects

in the form of domain walls or monopoles are practically excluded,

if the associated energy scale corresponds to physics beyond the

Standard Model.)
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Equation of motion in a non-trivial environment:

�ϕ+ V
′

eff(ϕ) = −Γϕ̇+ O(ϕ̇
2
, (∇ϕ)

2
) .

The assumption is that ϕ varies slowly in time and space, so that

the “fast” thermal matter fields see it as a constant.

A standard tool in thermal field theory is a “Kubo formula”,

allowing to determine such “response” coefficients:

Γ = − lim
ω→0

ρ(ω, 0)

ω
,

where for Lint = ϕHint:

ρ(ω, 0) = −
Z

t,x

e
iωt

fi

1

2

h

Ĥint(t, x), Ĥint(0, 0)
i

fl

.
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Sketch of a derivation

In Fourier space, with ϕ ∝ e−iωt+ip·x ϕ̃:

[−ω2
+ p

2
+m

2
eff − iωΓ]ϕ̃ = O(ϕ̃

2
) .

Compare this with the Euclidean propagator of ϕ̃ after analytic

continuation ωn → −i(ω + i0+):

1

ω2
n + p2 + ΠE

→ 1

−ω2 + p2 + Re ΠE + i Im ΠE

.

Take p → 0; denote m2
eff ≡ Re ΠE; and ρ(ω) ≡ Im ΠE.

Comparing the “pole position” with the solution of the equation

of motion we can identify Γ = −ρ(ω)/ω.
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The relevant oscillation frequency would now be

ω
2
= m

2
eff ∼ m

2
+
T 4

M2
,

but for m ≪ T ≪ M this is much smaller than any other

scales in the system, particularly T , so we can just as well take

the limit ω = meff → 0.

The final step, the rewriting of ρ = Im ΠE as a commutator, is

a standard relation and will be reviewed in the next lecture.
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Let us now return to the specific case Hint =
1

M
× 1

g2
F
aµν
F
a
µν.

At this point it is good to realize that the structure appearing can

be recognized as the trace anomaly of pure Yang-Mills theory,

Θ = T
µ
µ ∼

βg2

g4
F
aµν
F
a
µν ,

where βg2 is the β-function related to the running coupling.
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Sketch of a (Euclidean) “derivation”

With the convention

SE =

Z

dτ

Z

d
3−2ǫ

x



1

4g2
B

F
a
µνF

a
µν

ff

the Euclidean energy-momentum tensor is

Tµν =
1

g2
B

„

1

4
δµνF

a
αβF

a
αβ − F

a
αµF

a
αν

«

.

In δµµ = 4 − 2ǫ dimensions its trace is

Tµµ = −2ǫ

4

1

g2
B

F
a
αβF

a
αβ .
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The bare coupling is

g
2
B = g

2 − 11Nc

3ǫ

g4

(4π)2
+ O(g

6
) ,

1

g2
B

=
1

g2
+

11Nc

3ǫ

1

(4π)2
+ O(g

2
) .

So,

Tµµ ≃ −11Nc

6

1

(4π)2
F
a
αβF

a
αβ
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Kubo relation for the bulk viscosity:

ζ =
1

9
lim
ω→0

1

ω

Z

t,x

e
iωt

fi

1

2

h

Θ̂(t, x), Θ̂(0, 0)
i

fl

.

Moreover, motivated by heavy ion collisions, the weak-coupling

expression for ζ has been worked out,

ζ ∼ α2
sT

3

ln(1/αs)
, αs ≡

g2

4π
.

Arnold Dogan Moore hep-ph/0608012
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We see now that Hint =
1

Mg2
F
aµν
F
a
µν ∼ 1

Mg2
Θ.

In conclusion, the vacuum decay rate, Γ ∼ m3

M2 , is overtaken at

T ≫ m by a thermal correction:

Γ = lim
ω→0

1

ω
Im

Z

t,x

e
iωt

fi

1

2

h

Ĥint(t, x), Ĥint(0, 0)
i

fl

∼ ζ

M2g4
∼ 1

ln(1/αs)

T 3

M2
≫ m3

M2
.

In other words, the fact that there is already a plasma present

“facilitates” the decays into normal matter fields.
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Conclusions

Systematic heavy ion collision inspired computations may

find “exciting” applications in totally unexpected cosmological

contexts.

In practice, the effect found here is probably not large enough to

solve the moduli problem. If so, theories with such scalar fields

need to be excluded, which may serve as a useful constraint for

string-inspired cosmological models.
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III. Elastic scattering rate
of heavy quarks
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Overall picture in the heavy ion context

Heavy quarks are initially produced like in vacuum:

c, b

c̄, b̄

Subsequently they propagate through a thermal “medium”.

In the end they decay, often as c → ℓνX; the leptons ℓ can be

observed experimentally.
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Propagation through the medium

Like in Brownian motion, heavy quark jets (“open charm”) tend

to get stopped (“quenched”) by scatterings.

Since the number of heavy quarks is conserved before decay,

scatterings are of the elastic type from their point of view.
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Indeed in Au + Au less ℓ observed than expected:

STAR nucl-ex/0607012, PHENIX nucl-ex/0611018
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V: BDMPS c

d+Au
Au+Au (0-5%)

(Also observed is a non-zero v2 associated with heavy quarks.)
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Classical picture for a heavy quark already close to rest

Let pi be the momentum. According to the Langevin equation,

dpi(t)

dt
= −η pi(t) + ξi(t) ,

〈ξi(t)ξj(t′)〉 = κ δijδ(t− t
′
) , 〈ξi(t)〉 = 0 .

Here κ = “momentum diffusion coefficient”,

and η = “drag coefficient” = “kinetic thermalization rate”.
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Fluctuation-dissipation relation

We can solve exactly for the time evolution:

pi(t) = pi(0)e
−ηt

+

Z t

0

dt
′
e
η(t′−t)

ξi(t
′
) .

In particular, letting the system thermalize by waiting,

〈p2i 〉 eq ≡ lim
t→∞

〈p2i (t)〉

= lim
t→∞

Z t

0
dt1 e

η(t1−t)
Z t

0
dt2 e

η(t2−t)〈ξi(t1)ξi(t2)〉

=
κ

2η
.

Equipartition tells that
〈p2
i 〉 eq

2Mkin

=
T

2
⇒ η =

κ

2TMkin

.
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On the other hand, from the Langevin-equation,

dpi

dt
= −η pi + ξi , 〈ξi(t)ξi(t′)〉 = κ δ(t− t

′
) ,

we note that κ can be obtained as

κ =

Z ∞

−∞
dt 〈ξi(t)ξi(0)〉 .

Moreover, we may identify ξi as the Lorentz force: for small

velocities, ξi = gEi, where Ei is the colour-electric field.

So,

κ cl = g
2
Z ∞

−∞
dt 〈Ei(t)Ei(0)〉 .

Casalderrey-Solana Teaney hep-ph/0605199
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In Quantum Mechanics, we replace Ei by a Heisenberg

operator, Êi(t) ≡ eiĤtÊi(0)e
−iĤt, and write down an ordering

corresponding to the classical limit (symmetric in t → −t):

∆E(t) ≡ g2

3Nc

3
X

i=1

TrNc

fi

1

2

n

Êi(t), Êi(0)
o

fl

eq

,

〈...〉 eq =
1

Z
Tr[e

−βĤ
(...)] , β ≡ 1

T
.

Its Fourier transform is

∆̃E(ω) ≡
Z ∞

−∞
dt e

iωt
∆E(t) ,

and the momentum diffusion coefficient is κ = lim
ω→0

∆̃E(ω).
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In Quantum Field Theory, an important function describing the

real-time dynamics is the spectral function, ρE(ω), defined as

GE(t) ≡ g2

3Nc

3
X

i=1

TrNc

fi

1

2

h

Êi(t), Êi(0)
i

fl

eq

,

ρE(ω) ≡
Z ∞

−∞
dt e

iωt
CE(t) .

It can be shown that ∆̃E(ω) = [1 + 2nB(ω)] ρE(ω), where

nB(ω) ≡ 1

exp(βω) − 1

ω≪T≈ T

ω
.

So:

κ = lim
ω→0

2TρE(ω)

ω
.
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More generally, all of the correlation functions defined above can be related to each other. In
particular, all correlators can be expressed in terms of the spectral function, which in turn can be
determined as a certain analytic continuation of the Euclidean correlator. In order to do this, we
may first insert sets of energy eigenstates into the definitions of Π>

αβ and Π<
αβ :

Π>
αβ(Q) =

1

Z

∫

dt d3x eiQ·xTr
[

e−βĤ+iĤt 1
︸︷︷︸

P

m
|m〉 〈m|

φ̂α(0,x)e−iĤt 1
︸︷︷︸

P

n
|n〉 〈n|

φ̂†β(0,0)
]

=
1

Z

∑

m,n

∫

dt d3x eiQ·xe(−β+it)Eme−itEn〈m|φ̂α(0,x)|n〉 〈n|φ̂†β(0,0)|m〉

=
1

Z

∫

x

e−iq·x
∑

m,n

e−βEm 2π δ(q0 + Em − En)〈m|φ̂α(0,x)|n〉 〈n|φ̂†β(0,0)|m〉 , (0.1)

Π<
αβ(Q) =

1

Z

∫

dt d3x eiQ·xTr
[

e−βĤ 1
︸︷︷︸

P

n
|n〉 〈n|

φ̂†β(0,0)eiĤt 1
︸︷︷︸

P

m
|m〉 〈m|

φ̂α(0,x)e−iĤt
]

=
1

Z

∑

m,n

∫

dt d3x eiQ·xe(−β−it)EneitEm〈n|φ̂†β(0,0)|m〉 〈m|φ̂α(0,x)|n〉 (0.2)

=
1

Z

∫

x

e−iq·x
∑

m,n

e−βEn 2π δ(q0 + Em − En)
︸ ︷︷ ︸

En=Em+q0

〈m|φ̂α(0,x)|n〉 〈n|φ̂†β(0,0)|m〉

= e−βq
0

Π>
αβ(Q) . (0.3)

This is the Fourier-space version of the KMS relation. Consequently

ραβ(Q) =
1

2
[Π>
αβ(Q) − Π<

αβ(Q)] =
1

2
(eβq

0

− 1)Π<
αβ(Q) (0.4)

and, conversely,

Π<
αβ(Q) = 2nB(q0)ραβ(Q) , (0.5)

Π>
αβ(Q) = 2

eβq
0

eβq0 − 1
ραβ(Q) = 2[1 + nB(q0)]ραβ(Q) , (0.6)

where nB(x) ≡ 1/[exp(βx) − 1]. Moreover,

∆αβ(Q) =
1

2
[Π>
αβ(Q) + Π<

αβ(Q)] = [1 + 2nB(q0)]ραβ(Q) . (0.7)

Note that 1 + 2nB(−q0) = −[1 + 2nB(q0)], so that if ρ is odd in Q→ −Q, then ∆ is even.

Proof:
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The formulae shown can be derived more systematically

by employing an effective field theory relevant for heavy

quarks, namely HQET (Heavy Quark Effective Theory)

⇒ η =
κ

2MkinT

 

1 + O

 

α3/2
s T

Mkin

!!

,

κ = lim
ω→0

2TρE(ω)

ω
.
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Here ρE is the spectral function corresponding to the Euclidean

correlator

GE(τ)=−1

3

3
X

i=1

〈Re Tr[Uβ;τ gEi(τ, 0)Uτ ;0 gEi(0, 0)]〉
〈Re Tr[Uβ;0]〉

,

where Uτb;τa is a Wilson line in the time direction.

τ

β − τ

Caron-Huot ML Moore 0901.1195

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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Phenomenological interlude

Within leading-order (O(g4)) and next-to-leading order (O(g5);

first ever NLO transport coefficient!) perturbation theory:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 1 1.5 2 2.5

0.050.01 0.40.30.20.1

κ
/g

4
T

3

gs

αs

Next-to-leading order (eq. (2.5))
Leading order (eq. (2.4))

Truncated leading order (eq. (2.5) with C=0)

Caron-Huot Moore,

0708.4232; 0801.2173

There appears to be a huge correction in this case!
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Within a non-perturbative framework called “classical lattice

gauge theory”, which is kind of an effective theory for real-time

quantities in bosonic quantum field theory (mD,latt ∼ g2T/a):

0 1 2 3

g
2
N

c
T/m

D,latt

0

5

10

15

κ la
tt / 

[g
2 C

F
T

m
D

,la
tt / 

6π
]

2

SU(2)

SU(3)

O(g
4
)

fitted O(g
5
)

ML Moore Philipsen Tassler,

0902.2856

The real answer could be larger still!
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Numerically, converting κ to η =
κ

2TMkin

:

ηpQCD ∼ g4

8π

T 2

Mkin

∼ 0.3
T 2

Mkin

Braaten Thoma PRD 44 (1991) 2625;
Moore Teaney hep-ph/0412346

ηexp ∼ (1...3) × T 2

Mkin

e.g. Akamatsu et al 0809.1499

ηAdS ∼ gπ
√

3

2

T 2

Mkin

∼ 4
T 2

Mkin

Herzog et al hep-th/0605158;

Gubser hep-th/0605182;
Casalderrey Teaney hep-ph/0605199

So, we would “like” to have a large κ, but to be sure that the

picture is correct we need to determine it from lattice-QCD!
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Basics of spectral functions & Euclidean correlators

Heisenberg picture:

Ô(t) = e
iĤt
Ô(0)e

−iĤt
.

Spectral function:

ρ(ω) =

Z ∞

−∞
dt e

iωt 1

Z
Tr



e
−βĤ1

2

h

Ô(t), Ô(0)
i

ff

.

Transport coefficient: lim
ω→0

ρ(ω)

ω
.
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Some gymnastics with Green’s functions

Apart from the “real-time” Heisenberg-operators

Â(t) = e
iĤt
Â(0)e

−iĤt
,

we define “imaginary-time” Heisenberg-operators as

Â(τ) ≡ e
Ĥτ
Â(0)e

−Ĥτ
.

Despite the name, τ ∈ R; in fact, we always restrict to

0 ≤ τ ≤ β .
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Then we define:

Π>(ω) ≡
Z ∞

−∞
dt e

iωt〈Â(t)Â(0)〉 ,

Π<(ω) ≡
Z ∞

−∞
dt e

iωt〈Â(0)Â(t)〉 ,

ρ(ω) ≡
Z ∞

−∞
dt e

iωt

fi

1

2
[Â(t), Â(0)]

fl

,

GE(τ) ≡ 〈Â(τ)Â(0)〉 ,

G̃E(ω
b
n) ≡

Z β

0

dτ e
iω b
nτGE(τ) ; ω

b
n ≡ 2πnT , n ∈ Z .

Here the expectation value is 〈...〉 ≡ 1
Z Tr

n

e−βĤ(...)
o

, and it

is easy to see that GE(β) = GE(0), i.e. GE(τ) is periodic.
65



Apart from relations between the Minkowskian objects that we

saw before, we need the following relations to the Euclidean ones:

G̃E(ω
b
n) =

Z ∞

−∞

dω

π

ρ(ω)

ω − iω b
n

“spectral representation” ,

ρ(ω) =
1

2i

n

G̃E

“

−i[ω + i0
+
]
”

− G̃E

“

−i[ω − i0
+
]
”o

,

GE(τ) =

Z ∞

0

dω

π
ρ(ω)

cosh
“

β
2 − τ

”

ω

sinh βω
2

.

(The second one justifies the missing step on p.41, ρ = Im G̃E.)
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Proof of the “spectral representation”:

G̃E(ω
b
n) =

Z β

0
dτ e

iω b
nτ
h

Z ∞

−∞
dω

2π
e
−iωt

Π>(ω)
i

it→τ

=

Z β

0
dτ e

iω b
nτ
Z ∞

−∞
dω

2π
e
−ωτ

Π>(ω)

=

Z β

0
dτ e

iω b
nτ
Z ∞

−∞
dω

2π
e
−ωτ 2eβω

eβω − 1
ρ(ω)

=

Z ∞

−∞
dω

π

ρ(ω)

1 − e−βω

2

6

4

e(iω
b
n−ω)τ

iω b
n − ω

3

7

5

β

0

=

Z ∞

−∞
dω

π

ρ(ω)

1 − e−βω
e−βω − 1

iω b
n − ω

=

Z ∞

−∞
dω

π

ρ(ω)

ω − iω b
n
.

67



To prove the relation

ρ(ω) =
1

2i

n

G̃E

“

−i[ω + i0
+
]
”

− G̃E

“

−i[ω − i0
+
]
”o

,

start from the spectral representation

G̃E(ω
b
n) =

Z ∞

−∞

dω

π

ρ(ω)

ω − iω b
n

,

and make use of

1

x± i0+
= P

„

1

x

«

∓ iπδ(x) .
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To prove the third relation, use the spectral representation:

GE(τ) = T
X

ω b
n

e
−iω b

nτ G̃E(ω
b
n)

= T
X

ω b
n

e
−iω b

nτ
Z ∞

0

dω

π

"

ρ(ω)

ω − iω b
n

+
ρ(−ω)

−ω − iω b
n

#

= T
X

ω b
n

e
−iω b

nτ
Z ∞

0

dω

π
ρ(ω)

"

1

ω − iω b
n

+
1

ω + iω b
n

#

=

Z ∞

0

dω

π
ρ(ω) T

X

ω b
n

e
−iω b

nτ
2ω

ω2 + (ω b
n)2

=

Z ∞

0

dω

π
ρ(ω)

cosh
“

β
2 − τ

”

ω

sinh
βω
2

.

We used ρ(−ω) = −ρ(ω), true under weak assumptions.

69



To summarize, the spectral function ρ(ω) determines the

Euclidean correlators, both in τ -space (GE(τ)) or in ω b
n-space

(G̃E(ω b
n)). The relations are in principle invertible.

This is conceptually comforting, because Euclidean observables

can be computed with regular functional integrals, a well-defined

procedure even on the non-perturbative (lattice) level.
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Consider now a correlator of two conserved charges:

G
E
00(τ) ≡

fiZ

d
3
x Ĵ0(τ, x)Ĵ0(0, 0)

fl

.

The claim is that

ρ00(ω)

ω

!
= ∆00βπδ(ω) .

This is because the correlator must be independent of τ :

G
E
00(τ) =

Z ∞

−∞

dω

2π
ρ00(ω)

cosh
“

β
2 − τ

”

ω

sinh βω
2

= ∆00 .
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Indeed, the correlator of a conserved charge is necessarily a

constant (thanks to a Ward-Takahashi identity):

∂τ

fiZ

d
3
x Ĵ0(τ, x)Ĵ0(0, 0)

fl

= 0 .
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Consider then the correlator of the spatial components:

G
E
ii(τ) ≡

fiZ

d
3
x Ĵi(τ, x)Ĵi(0, 0)

fl

.

It turns out that in the free theory, , this again
contains a τ -independent “zero-mode”:

3
X

i=1

G
E
ii(τ) = 4Nc

3T

M

„

MT

2π

«3/2

e
−βM

+ (τ − dep.) .

However, now interactions can smoothen δ(ω) from ρii(ω)/ω.

This yields a “transport peak”.
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So, generically, spectral functions corresponding to spatial

components of conserved currents have transport peaks at small

frequencies. For instance, for Ĵi of heavy quarks:

This makes a direct lattice study of limω→0
ρ(ω)
ω very difficult!
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Fortunately, there is no conservation law associated with the

electric field correlator, so the behaviour should be smoother.

According to classical lattice gauge theory again:

0.0 1.0 2.0 3.0 4.0
aω

0.0

0.2

0.4

0.6

0.8

a3
κ la

tt

classical lattice gauge theory

O(g
2
) pert.theory

SU(3), β
L
 = 24, N = 40

Hopefully lattice data for κQCD will be available soon!
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What does this have to do with cosmology?

Cold Dark Matter is by definition non-relativistic, and kinetically

decouples when elastic scatterings, albeit with weak interactions,

cease to be active.

2

Then their phase space density no longer behaves as e−p
2/2MkinT .

I.e. the velocity dispersion of dark matter, which may be visible

in the large scale structures that can form, is determined by the

temperature at which elastic scatterings last take place.

76



Typically, though, kinetic decoupling happens at a very low

temperature, so probably a Fermi model treatment is sufficient,

and then the analogy with a gauge theory like QCD is feeble.

Hofmann Schwarz Stöcker astro-ph/0104173

But at least a conceptual link exists, and could perhaps play a

more significant role e.g. in connection with leptogenesis.
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Conclusions

Classical arguments / effective theory techniques allow to reduce

the heavy quark “momentum diffusion coefficient” to a gluonic

observable, the electric field correlator (along a Polyakov loop).

The convergence of the weak-coupling expansion depends on the

observable; it appears to be very slow for κ.

Fortunately the electric field correlator might be more manageable

on the lattice than those of conserved currents, so a non-

perturbative determination of κ may be possible.
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IV. Inelastic reactions:
quarkonium in medium
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For quarkonium we can imagine a chain of events similar to

that for single quarks:

Initial production like in vacuum.

Subsequent propagation through a thermal “medium”.

In the end a decay, often as qq̄ → ℓ+ℓ−.
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During propagation heavy quarkonium would feel less drag from

elastic scatterings than heavy quarks because it has no net colour

charge.

However, because of its finite size, it does have a colour dipole

which leads to kicks and an eventual “decoherence” of its state:

But these effects should be suppressed by O(rT )2?
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On the other hand the Coulomb potential gets Debye-screened

within the medium:

q

q̄

Q

So the effective r could be larger than at T = 0, and the

thermal effects on quarkonium propagation significant.

Once again these effects make themselves visible in the shape of

the quarkonium spectral function.

82



However, we could also imagine inelastic processes for

quarkonium; both within a medium, amounting to chemical

thermalization:
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. . . as well as with decay products escaping the medium:

q

q̄

ℓ+

ℓ−
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These processes are interesting because of some analogy with the

inelastic dark matter processes that we saw before:

2

−
2

Dark
Matter

Active
Matter
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In the case qq̄ → ℓ+ℓ− the inelastic part is electromagnetic and

thus purely perturbative! This allows to reduce the inelastic rate

to the “elastic” spectral function (again a “Kubo relation”):

McLerran Toimela 1985; Weldon 1990; Gale Kapusta 1991

dNℓ+ℓ−

d4xd4Q
=

−2e4Z2

3(2π)5Q2

`

1+
2m2

ℓ

Q2

´`

1− 4m2
ℓ

Q2

´
1
2nB(q

0
)ρV(Q) ;

ρV(Q) ≡
Z ∞

−∞
dt

Z

d
3
x e

iQ·x
fi

1

2
[Ĵ µ

(x), Ĵµ(0)]

fl

.

For q0>∼ 2M we see the Boltzmann suppression associated with

dilepton production from thermalized heavy quarkonium.

However such a thermalization requires that inelastic reactions

within the medium are fast enough to take place.
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To keep in mind once again:

Propagation takes place in Minkowskian time (t), with a

Minkowskian frequency (ω), but within a thermal system

(β = 1/T ).

fi

1

2
[Ĵ µ

(t, x), Ĵµ(0, 0)]

fl

,

Ĵ µ
(t, x) = e

iĤtĴ µ
(0, x)e

−iĤt
,

〈. . .〉 ≡ 1

Z
Tr
h

(...)e
−βĤ

i

.
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What is traditionally done in practice?

A popular lattice observable:

ψC(r) ≡ 1

Nc

〈Tr[PrP
†
0 ]〉Coulomb . r1

T

No real time here! But empirically “nice”.

(The same object in Landau gauge, or gauge-invariant

alternatives, such as ψW(r) ≡ 1
Nc

〈Tr[PrW0P
†
0W

†
0 ]〉 or

ψT(r) ≡ 1

N2
c
〈Tr[Pr] Tr[P †

0 ]〉, do not reduce to the known

zero-temperature static potential at short distances.)
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Weak-coupling expression for 0<∼ rT <∼ 1 up to O(α2
s):

Burnier et al 0911.3480

ln

(
ψC(r)

|ψP|2

)

≈
g2CF exp(−mEr)

4πTr

{

1 +
g2

(4π)2

[
11Nc

3

(

Lb + 1

)

−
2Nf

3

(

Lf − 1

)]}

+
g4CFNc exp(−mEr)

(4π)2

[

2 − ln(2mEr) − γE + e2mErE1(2mEr)

]

−
g4CFNc

(4π)2
exp(−2mEr)

8T 2r2

+
g4CFNc

(4π)2

[
1

12T 2r2
+

Li2(e
−4πTr)

(2πTr)2
+

1

πTr

∫
∞

1

dx

(
1

x2
−

1

2x4

)

ln
(

1 − e−4πTrx

)]

+
g4CFNf

(4π)2

[
1

2πTr

∫
∞

1

dx

(
1

x2
−

1

x4

)

ln
1 + e−2πTrx

1 − e−2πTrx

]

+ O(g5) ,

where ψP is the expectation value of a single Polyakov loop.

For r ≪ 1
T , this reproduces the classic T = 0 static potential.

Fischler NPB 129 (1977) 157
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Comparison with lattice [βV1 ≡ − ln(ψC/|ψP|2)]:
Nf = 0 data from Kaczmarek et al hep-lat/0207002

0.0 0.2 0.4 0.6 0.8 1.0 1.2
r T

-2.0

-1.0

0.0

β 
V

1 2-loop g
2

1-loop g
2

Nτ = 4

Nτ = 8

N
f
 = 0, T = 3 T

c

0.0 0.2 0.4 0.6 0.8 1.0 1.2
r T

-2.0

-1.0

0.0

β 
V

1 2-loop g
2

1-loop g
2

Nτ = 4

Nτ = 8

N
f
 = 0, T = 12 T

c

So, reasonable agreement even at surprisingly low temperatures,

when computing the same gauge-fixed quantity.
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How to really address heavy quarkonium?

In order to get a handle on the many scales appearing, both

vacuum and thermal, need once again to make use of effective

field theories.

For quarkonium, the relevant framework is that of NRQCD

(Non-Relativistic QCD) or one of its descendants (pNRQCD etc).

In such frameworks, various heavy quark potentials appear as

matching coefficients, and can be given a concrete definition

(at least within weak-coupling expansion, which now appears

reasonable).

in the thermal context: ML et al hep-ph/0611300; Beraudo et al 0712.4394;

Escobedo Soto 0804.0691; Brambilla et al 0804.0993
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It is important to keep in mind that the Euclidean β = 1/T is

“small”, while the Minkowskian t is “large” in the “static” limit.

⇒ formally, define a potential from analytic continuation:

r
τ

CE(τ, r) ≡ 〈Tr[WE(τ, r)]〉 ,
i∂tCE(it, r) ≡ V>(t, r)CE(it, r) .

The static limit V>(∞, r) through a spectral function ρ(ω, r)?

Rothkopf Hatsuda Sasaki 0910.2321

Position of the spectral peak: average energy, ReV>(∞, r).

Its width: decoherence, ImV>(∞, r).
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Explicitly at O(αs):

ReV>(∞, r) = −g
2CF

4π

»

mE +
exp(−mEr)

r

–

,

ImV>(∞, r) = −g
2TCF

4π
φ(mEr) ,

where mE ∼ gT is the Debye mass, CF ≡ 4/3, and

φ(x) = 2

Z ∞

0

dz z

(z2 + 1)2

»

1 − sin(zx)

zx

–

.

At mEr ≪ 1, φ ∼ (mEr)
2, as is appropriate for a dipole.
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Numerical test for the real part: Rothkopf Hatsuda Sasaki 0910.2321
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Low and behold, it does appear to agree with the Coulomb gauge

potential! But more precision required for definite conclusions.
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Determine finally the spectral function and the dilepton rate

Insert V>(∞, r) into the time-dependent Schrödinger:

(

i∂t −
"

2M + V>(∞, r) − ∇2
r

M
+ O

` 1

M2

´

#)

C>(t) = 0 .

Solve and take Fourier transform from C>(t) to C̃>(ω), with

ω = q0, and finally convert to spectral function (cf. page 57)

ρV(Q) =
1

2

„

1 − e
−βq0

«

C̃>(Q)
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Result for the spectral function with such ingredients:
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Burnier et al 0812.2105
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Corresponding result for the thermal dilepton rate from b̄b:
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Burnier et al 0812.2105

97



As already mentioned, in cosmology a somewhat similar rate is

relevant for Cold Dark Matter particles:

figure from Drees Kim Nagao 0911.3795

Another formal counterpart might be the initial chemical

thermalization and/or final decoupling of heavy Majorana

neutrinos relevant for leptogenesis.
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Conclusions

Hot QCD is a simple but non-trivial theory for which systematic

theoretical tools are being developed, and to some extent tested

against heavy ion collisions as well as lattice QCD.

Some of these tools may find use also in cosmology, perhaps with

the modification gluons → grand unified gauge bosons, gluons

→ W±, Z0, or gluons → Higgs.
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