1

Mi 13.07.2005, 16:15, D6-135

Aufgabe 1: Lemma von Schur: Seien $\mathscr{D}(g)$ die Darstellungsmatrizen einer irreduziblen [z.B. definierenden] Darstellung und S eine Matrix mit der Eigenschaft $\mathscr{D}(g)S = S\mathscr{D}(g) \quad \forall g \in \mathcal{G}$. Zeigen Sie, daß S dann proportional zur Einheitsmatrix ist. [Hinweis: Irreduzibilität heißt, daß keine invarianten Unterräume existieren. Sei v_{λ} ein Eigenvektor von S, d.h. $Sv_{\lambda} = \lambda v_{\lambda}$. Weisen Sie nach, daß dann auch $\mathscr{D}(g)v_{\lambda}$ ein Eigenvektor von S mit demselben Eigenwert ist. Weil es keine invarianten Unterräume gibt, muß die Menge $\{\mathscr{D}(g)v_{\lambda}\}$ den ganzen Darstellungsraum aufspannen. Das bedeutet, für **alle** Vektoren des Darstellungsraums gilt $Sv = \lambda v$.]

Aufgabe 2: Was ist das Zentrum der SU(n)? [Hinweis: Lemma von Schur.]

Aufgabe 3: In der Vorlesung haben wir den Homomorphismus $\varphi: SL(2,\mathbb{C}) \to L_+^{\uparrow}$, $\varphi(M) = \Lambda \in L_+^{\uparrow}$, mit der Wirkung

$$A' \equiv x'^{\mu} \, \sigma_{\mu} \equiv \Lambda^{\mu}_{\ \nu} \, x^{\nu} \sigma_{\mu} \equiv M \, A \, M^{\dagger}$$

auf $A \equiv x^{\mu} \sigma_{\mu}$ kennengelernt. Wie lautet $\operatorname{Kern}(\varphi)$?

[$\mathit{Hinweis}$: Falls $M \in \mathrm{Kern}(\varphi)$, so muß $A = M \, A \, M^\dagger$ für alle möglichen hermiteschen A gelten. Verwenden Sie dazu das Lemma von Schur.]

Zu welcher Faktorgruppe ist L_+^{\uparrow} isomorph?

Aufgabe 4: Wir wissen, daß die SU(2) und SO(3) homomorph sind [siehe Aufgabe 2.4]. Daher haben sie dieselben Lie-Algebren. Zeigen Sie, daß ihre Zentren jedoch verschieden sind.

[Diese Tatsache schließt die halbzahligen Darstellungen für die SO(3) aus. Die SU(2) ist die "Überlagerungsgruppe" der SO(3) und es gilt $SU(2)/\mathbb{Z}_2\cong SO(3)$.]