1

Mi 29.06.2005, 16:15, D6-135

Aufgabe 1: Betrachten Sie Drehungen um die Achse \hat{u} mit dem Drehwinkel θ . Zeigen Sie, daß gilt

$$R(\hat{u}, \theta) \vec{x} = \cos(\theta) \vec{x} + (1 - \cos(\theta)) (\hat{u} \cdot \vec{x}) \vec{u} + \sin(\theta) \hat{u} \times \vec{x}.$$

Aufgabe 2: Sei $\beta = v/c$. Wir definieren die Rapidität η durch $\beta \equiv \tanh(\eta)$, bezeichnen einen Lorentzboost in Richtung \hat{n} mit $B(\hat{n}, \eta)$ und transformieren

$$y = B(\hat{n}, \eta) x$$
.

Zeigen Sie, daß gilt:

$$y^{0} = \cosh(\eta) x^{0} + \sinh(\eta) \hat{n} \cdot \vec{x} ,$$

$$\vec{y} = \vec{x} - (\hat{n} \cdot \vec{x}) \hat{n} + [\sinh(\eta) x^{0} + \cosh(\eta) \hat{n} \cdot \vec{x}] \hat{n} .$$

Aufgabe 3: Seien $Z_{\mu\nu}$ reelle 4×4 -Matrizen mit $Z_{\mu\nu}=-Z_{\nu\mu}$. Es existieren also sechs unabhängige Matrizen dieser Art. Wir definieren

$$Z_{23} \equiv \frac{\partial R(\hat{1}, \theta)}{\partial \theta} \Big|_{\theta=0}, \qquad Z_{10} \equiv \frac{\partial B(\hat{1}, \eta)}{\partial \eta} \Big|_{\eta=0},$$

$$Z_{31} \equiv \frac{\partial R(\hat{2}, \theta)}{\partial \theta} \Big|_{\theta=0}, \qquad Z_{20} \equiv \frac{\partial B(\hat{2}, \eta)}{\partial \eta} \Big|_{\eta=0},$$

$$Z_{12} \equiv \frac{\partial R(\hat{3}, \theta)}{\partial \theta} \Big|_{\theta=0}, \qquad Z_{30} \equiv \frac{\partial B(\hat{3}, \eta)}{\partial \eta} \Big|_{\eta=0}.$$

Wie sehen die $Z_{\mu\nu}$ explizit aus?

Aufgabe 4: Betrachten Sie die Menge $S = \{I, I_P, I_T, I_{PT}\}$, wobei I die Identitätstransformation, I_P die Raumspiegelung, I_T die Zeitumkehr und I_{PT} die Raumzeitspiegelung ist.

- (i) Zeigen Sie, daß S eine Untergruppe der Lorentzgruppe ist.
- (ii) Zu welcher Gruppe der Ordnung 4 ist sie isomorph?
- (iii) Hat S weitere Untergruppen?