Aufgabe 1: Retardierte Greensche Funktion.

Betrachtet wird die formale Struktur

$$\hat{G}_0(t;t_0) := \int_{-\infty}^{+\infty} \frac{\mathrm{d}E}{2\pi\hbar} \frac{e^{-\frac{iE(t-t_0)}{\hbar}}}{E - \hat{H}_0 + i0^+} \,,$$

wobei \hat{H}_0 ein hermitescher Operator ist, d.h. reelle Eigenwerte hat. Es ist leicht sich davon zu überzeugen, dass wenn \hat{G} auf einen Eigenzustand von \hat{H}_0 operiert, dann kann \hat{H}_0 durch den entsprechenden Eigenwert ersetzt werden; \hat{G}_0 wird also am besten in der Basis der Eigenzuständen von \hat{H}_0 dargestellt.

(a) Zeigen Sie, dass \hat{G}_0 der folgenden Gleichung genügt:

$$(i\hbar\partial_t - \hat{H}_0)\hat{G}_0(t;t_0) = \hat{\mathbb{1}}\,\delta(t-t_0).$$

- (b) Zeigen Sie, dass \hat{G}_0 ein "retardierter" Operator ist; d.h., dass \hat{G}_0 für $t < t_0$ ein Nulloperator ist, während \hat{G}_0 für $t \geq t_0$ eine nichttriviale Wirkung haben kann.
- (c) Führen Sie im Falle $t>t_0$ die Integration durch, und vergleichen Sie das Ergebnis mit dem bekannten Ausdruck des Zeitentwicklungsoperators.

Aufgabe 2: Streuung an einer homogenen Kugel in der Bornschen Näherung.

- (a) Berechnen Sie den differenziellen und den totalen Streuquerschnitt in der Bornschen Näherung für das Potential $V(\vec{x}) = V_0 \Theta(R |\vec{x}|)$.
- (b) Das Ergebnis ist invariant in $V_0 \rightarrow -V_0$, d.h. unabhängig davon ob das Potential anziehend oder abstoßend ist. Ist dieses Verhalten physikalisch sinnvoll? Könnten Korrekturen höherer Ordnungen diese Symmetrie verletzen?
- (c) Im klassischen Limes würde man ein Verhalten $\sigma \sim \pi R^2$ erwarten. Wie klein soll $|V_0|$ bleiben, um diese Grenze durch die Bornsche Näherung nicht zu verletzen? Können Sie der Antwort eine physikalische Interpretation geben? [Hinweis: Wenn ein gebundener Zustand innerhalb des Radius R entsteht, dann ist laut Unschärferelation $\Delta p \sim \hbar/R$, und die entsprechende kinetische Energie beträgt $\sim (\Delta p)^2/2m$.]

Aufgabe 3: Streuung an einem elektrischen Dipol in der Bornschen Näherung. Ein geladenes Teilchen streut an einem elektrischen Dipol, welches durch das Potential

$$V(\vec{x}) = Ze^2 \left(\frac{1}{|\vec{x} + \vec{a}/2|} - \frac{1}{|\vec{x} - \vec{a}/2|} \right)$$

dargestellt werden kann.

- (a) Bestimmen Sie $d\sigma_{fi}/d\Omega_{f}$ in der Bornschen Näherung.
- (b) Skizzieren Sie ${\rm d}\sigma_{\rm fi}/{\rm d}\Omega_{\rm f}$ als Funktion des Streuwinkels für die Fälle $\vec{k}_i \parallel \vec{a}$ und $\vec{k}_i \perp \vec{a}$.
- (c) Ist $\sigma_{\rm fi}=\int\!{
 m d}\Omega_{\rm f}\,{
 m d}\sigma_{\rm fi}\over{
 m d}\Omega_{\rm f}$ endlich? (Sie brauchen keinen expliziten Ausdruck zu ermitteln.)