[Abgabe 23.06.2009 um 10-12 Uhr bei Herrn Ummethum (E5-121), Tutorien 25.-26.06.2009]

Aufgabe A: Homogen magnetisierte Kugel. Betrachten Sie eine Kugel mit Radius R mit homogener Magnetisierung \vec{M} . Außerhalb der Kugel sei Vakuum.

- (a) Zeigen Sie, dass es ein skalares Potential ψ gibt, so dass $\vec{H}=-\nabla\psi$. Zeigen Sie außerdem, dass ψ die Laplace-Gleichung $\nabla^2\psi=0$ erfüllt.
- (b) Wir legen die x^3 -Achse in Richtung von \vec{M} , d.h. $\vec{M} = \vec{e}_3 M$, so dass ψ nicht vom Azimuthalwinkel φ abhängt. Wegen $\nabla^2 \psi = 0$ läßt sich ψ wie folgt entwickeln: $\psi(r,\theta) = \sum_l A_l r^l P_l(\cos\theta)$ innerhalb, und $\psi(r,\theta) = \sum_l [B_l r^l + C_l/r^{l+1}] P_l(\cos\theta)$ außerhalb der Kugel. Dabei sind P_l die Legendre-Polynome: $\nabla^2 P_l(\cos\theta) = -l(l+1) P_l(\cos\theta)/r^2$. Begründen Sie, warum $B_l = 0$ für alle l gelten muss.
- (c) Stellen Sie die Randbedigungen für ψ an der Kugeloberfläche auf. Zeigen Sie, dass daraus $A_l=C_l=0$ für alle $l\neq 1$ folgt, sowie $A_1=C_1/R^3=4\pi M/3$.
- (d) Berechnen Sie mit Hilfe von (c) die Felder \vec{B} und \vec{H} innerhalb und außerhalb der Kugel. Zeigen Sie, dass beide in der Kugel homogen sind und außerhalb genau dem Feld eines magnetischen Dipols entsprechen.

Aufgabe V1: Spiegelladungsmethode für Dielektrika. Zwei Medien mit Dielektrizitätskonstanten ϵ_1 und ϵ_2 seien durch die Ebene $x^3=0$ voneinander getrennt ($\epsilon=\epsilon_1$ bei $x^3<0$). Am Ort $\vec{a}=(0,0,a)$ mit a>0 befinde sich eine Punktladung q. Berechnen Sie das elektrostatische Potential ϕ im ganzen Raum. Machen Sie dazu folgenden Ansatz: Für $x^3>0$ setze sich ϕ aus dem Potential der Ladung q bei \vec{a} und einer zusätzlichen Spiegelladung q'' bei $\vec{a}''=(0,0,-a)$ zusammen, und für $x^3<0$ sei es durch das einer Ladung q' bei \vec{a} gegeben.

- (a) Stellen Sie die Grenzbedinungen bei $x^3 = 0$ auf.
- (b) Bestimmen Sie daraus q' und q''.

[Hinweis: Landau-Lifschitz, Elektrodynamik der Kontinua, §7].

Aufgabe V2: Spiegelladungsmethode für leitende Kugeln. Betrachten Sie eine geerdete leitende Kugel mit Radius R und Mittelpunkt im Ursprung des Koordinaten-Systems. Eine Ladung q sitze bei $\vec{x}=(0,0,a)$, wobei a>R. Zeigen Sie, dass man mit Hilfe einer einzigen Spiegel-Ladung q'=-qR/a bei $\vec{x}'=(0,0,R^2/a)$ das Potential ϕ außerhalb der Kugel erhalten kann. [Hinweis: Landau-Lifschitz, Elektrodynamik der Kontinua, §3].

Aufgabe V3: Kapazität. Betrachten Sie ein System aus zwei Leitern 1 und 2, und drücken Sie die übliche Kapazität C durch die Kapazitätskoeffizienten C_{ij} aus (die übliche Kapazität ist definiert durch $Q = C(\phi_2 - \phi_1)$, wobei die Ladungen auf den Leitern $\pm Q$ sind und ϕ_i deren Potentiale). [Hinweis: Landau-Lifschitz, Elektrodynamik der Kontinua, §2].